UM-H

URETHAN HYBRID

REVISION R04.00 11.01.2021

HINWEIS: DIESES TECHNISCHE DATENBLATT ERSETZT ALLE VORHERIGEN VERSIONEN. DIE ANWEISUNGEN IN DIESER DOKUMENTATION BASIEREN AUF UNSEREN TESTS UND ERFAHRUNGEN UND WURDEN NACH BESTEM WISSEN UND GEWISSEN ERSTELLT. AUFGRUND DER VIELZAHL AN VERSCHIEDENEN MATERIALIEN UND UNTERGRÜNDEN SOWIE DER VIELEN UNTERSCHIEDLICHEN MÖGLICHEN ANWENDUNGEN, DIE AUSSERHALB UNSERER KONTROLLE LIEGEN, ÜBERNEHMEN WIR KEINERLEI VERANTWORTUNG FÜR DIE ERZIELTEN ERGEBNISSE. DA DIE KONSTRUKTION UND DIE BESCHAFFENHEIT DES SUBSTRATS UND DIE VERARBEITUNGSBEDINGUNGEN AUSSERHALB UNSERER KÖNTROLLE LIEGEN, ÜBERNEHMEN WIR KEINERLEI HAFTUNG FÜR DIESE PUBLIKATION. IN JEDEM FALLE WIRD EMPFOHLEN, VOR DER ANWENDUNG ENTSPRECHENDE TESTS DURCHZUFÜHREN.

alt	Seite
1. Allgemein	3
Produktbeschreibung	3
Eigenschaften und Vorteile	3
Anwendungsbeispiele	4
Verarbeitung und Lagerung Anwendungsbereich und Verwendungszweck	4
Mechanische Eigenschaften (Mörtel)	4-
Reaktivität	4
2. Verankerung in Beton	5
Montageanweisung	5.
Montagezubehör	7 ,
Montagekennwerte	8
Empfohlene Lasten	10
Feuerwiderstand	14
4. Nachträglicher Bewehrungsanschluß	17:5
Montageanweisung	17
Montagezubehör	18
Endverankerung und Übergreifungsstoß - Bemessungslast N _{Rd}	22
Feuerwiderstand - Übergreifungsstoß	. 25
Feuerwiderstand - Endverankerung Träger/Wand oder Stütze/Platte	29
4. Chemische Beständigkeit	36

1. Allgemein

Produktbeschreibung

Der UM-H-Mörtel ist ein 2-Komponenten-Reaktionsharzmörtel auf Basis eines styrolfreien URETHAN HYBRID-Harzes und wird in einem 2-K-Kartuschensystem (ST - Standardkartusche) geliefert. Dieses Hochleistungsprodukt kann in Kombination mit einem Hand-, Batterie- oder Druckluft-Auspresswerkzeug und einem statischen Mischer verwendet werden. Es wurde speziell für die Verankerung von Gewindestangen, Bewehrungsstäben oder Innengewindestangenhülsen in Beton (auch Leichtbeton) entwickelt. Aufgrund des hervorragenden Standverhaltens ist die Verwendbarkeit für die Überkopfanwendung gegeben. Das Mörtelprodukt UM-H zeichnet sich durch ein breites Anwendungsspektrum einschließlich seismischer Einwirkungen C1 + C2 mit einer Einbautemperatur von -5°C und einer Anwendungstemperatur bis 160°C sowie durch eine hohe chemische Beständigkeit für Anwendungen in extremen Umgebungen wie z.B. in Schwimmbädern (Chlor) oder in Meeresnähe (Salz) aus. Die breite Palette an Zertifikaten, nationalen und internationalen Zulassungen, ermöglicht nahezu jeden Einsatz.

Eigenschaften und Vorteile

- Europäische Bewertung gemäß EAD 330499-01-0601 (Option 1): ETA-16/0018
- Europäische Bewertung nach TR 049 (Seismik C1 und C2): ETA-16/0018
- Europäische Beurteilung nach EAD 330087-00-0601 (Nachträglicher Bewehrungsanschluss): ETA-16/0762
- US-Zulassung und Kanadalistung nach AC 308 in Beton (ICC-ES): ESR-4011, ELC-4011, ASTM C881
- Zertifiziert für Trinkwasseranwendungen nach NSF-Standard 61
- Für schwere Verankerungen Verankerung und nachträglicher Bewehrungsanschluss
- Feuerwiderstands-Prüfbericht 21825, durchgeführte Prüfungen nach DIN EN 1363-1:2012 und Technical Report 020
- Überkopfmontage
- Geeignet für Befestigungspunkte mit geringen Rand- und Achsabständen durch eine spreizkraftfreie Verankerung
- Hohe chemische Beständigkeit
- Geringe Geruchsemission
- Hohe Biege- und Druckfestigkeit
- Die Kartusche kann bis zum Ende der Haltbarkeitsdauer wiederverwendet werden, indem der statische Mischer ersetzt oder die Kartusche mit der Verschlusskappe wieder verschlossen wird.

Anwendungsbeispiele

Geeignet für die Befestigung von Fassaden, Dächern, Holzkonstruktionen, Metallkonstruktionen; Metallprofile, Säulen, Balken, Konsolen, Geländer, Sanitäreinrichtungen, Kabeltrassen, Rohrleitungen, nachträglicher Bewehrungsanschluss (Erweiterung oder Verstärkung) usw.

Verarbeitung und Lagerung

- Lagerung: An einem kalten und dunklen Ort lagern, Lagertemperatur: von +5°C bis +25°C
- · Haltbarkeit: 18 Monate für Kartuschen

Anwendungsbereich und Verwendungszweck

- Untergründe: gerissener und ungerissener Beton, Leichtbeton, Porenbeton, Naturstein (Achtung! Naturstein kann sich verfärben, deshalb vorab auf Eignung prüfen)
- Befestigungselemente:
 Gewindestangen (galvanisch oder feuerverzinkt, Edelstahl A4 oder HCR); Bewehrungsstäbe;
 Innengewindehülsen; sonstige profilierte Ankerstangen; Stahlprofile mit Hinterschnitten (z.B. gelochte Profile), usw.
- Temperaturbereich:

 5°C bis zu +40°C Installationstemperatur;
 Kartuschentemperatur min. +5°C; optimal +20°C;

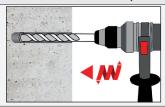
Verankerungsgrundtemperatur nach vollständiger Aushärtung -40°C bis +160°C

Mechanische Eigenschaften (Mörtel)

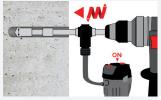
Eigenschaft	Testmethode	Ergebnis
UV-Beständigkeit	-	Pass
Wasserdichtigkeit	DIN EN 12390-8	0 mm
Rohdichte	-	1,78 kg / dm³
Druckfestigkeit	EN 196 Teil1	126 N / mm²
Biegezugfestigkeit	EN 196 Teil1	22 N / mm²
axiale Zugfestigkeit	DIN EN ISO 527-2	15 N / mm²
E-Modul	DIN EN ISO 527-2	8.300 N / mm²
Schrumpf	DIN 52450	1,8 ‰
Härte Shore A	DIN EN ISO 868	97
Härte Shore D	DIN EN ISO 868	-
Elektrischer Widerstand	IEC 93	7,2 * 10 ¹³ Ω
Wärmeleitfähigkeit	DIN EN 993-15	1,06 W / m·K
spez. Wärmekapazität	DIN EN 993-15	1.090 J / kg · K

Reaktivität

	peratu	ır im sgrund	offene Verarbeitungszeit	Aushärtezeit in trockenem Verankerungsgrund ¹⁾
-5 °C	bis	-1°C	50 min	5,0 h
0 °C	bis	+4°C	25 min	3,5 h
+5 °C	bis	+9°C	15 min	2 h


Temperatur im Verankerungsgrund	offene Verarbeitungszeit	Aushärtezeit in trockenem Verankerungsgrund ¹⁾
+10 °C bis +14°C	10 min	1 h
+15°C bis +19°C	6 min	40 min.
+ 20 °C bis +29°C	3 min	30 min.
+30 °C bis +40°C	2 min	30 min.
Kartuschen- temperatur	+5 °C bis	+40 °C

¹⁾ Die Aushärtezeiten in feuchtem Beton sind zu verdoppeln.

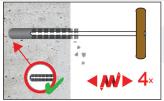

2. Verankerung in Beton

Montageanweisung

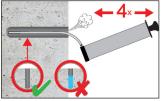
Bohrloch erstellen (HD, CD; HDB)

1a. Hammerbohrer (HD) oder Pressluftbohrer (CD). Bohrloch drehschlagend mit vorgeschriebenem Bohrerdurchmesser (Seite 8) und gewählter Bohrlochtiefe erstellen. Weiter mit Schritt 2. Bei Fehlbohrungen ist das Bohrloch zu vermörteln.

2a. Hohlbohrersystem (HDB)
Bohrloch drehschlagend mit vorgeschriebenem Bohrerdurchmesser
(Seite 8/9) und gewählter Bohrlochtiefe mit erstellen. Das Hohlbohrersystem entfernt den Bohrstaub und reinigt das Bohrloch während des Bohrens. Weiter mit Schritt 3. Bei Fehlbohrungen ist das Bohrloch

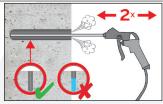

zu vermörteln.

Achtung! Vor der Reinigung muss im Bohrloch stehendes Wasser entfernt werden.

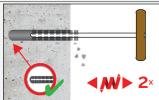

MAC: Reinigung für Bohrerdurchmesser $d_0 \le 20$ mm und Bohrlochtiefe $h_0 \le 10d_{nom}$ (nur ungerissener Beton!)

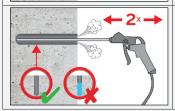
2a. Das Bohrloch vom Bohrlochgrund her 4x vollständig mit einer Handpumpe (Seite 7) ausblasen.

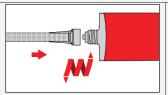
2b. Bürstendurchmesser prüfen (Seite 8). Das Bohrloch ist mit geeigneter Drahtbürste > d_{b,min} (Seite 8) minimum 4x mit Drehbewegungen auszubürsten. Bei tiefen Bohrlöchern geeignete Bürstenverlängerung benutzen.

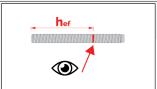


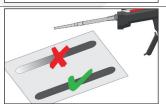
2c. Abschließend das Bohrloch erneut vom Bohrlochgrund her 4x vollständig mit einer Handpumpe (Seite 7) ausblasen.


Nach der Reinigung ist das Bohrloch bis zum Injizieren des Mörtels vor erneutem Verschmutzen in einer geeigneten Weise zu schützen. Ggf. ist die Reinigung unmittelbar vor dem Injizieren des Mörtels zu wiederholen. Einfließendes Wasser darf nicht zur erneuten Verschmutzung des Bohrloches führen.

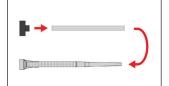

CAC: Reinigung in trockenen, feuchten und wassergefüllten Bohrlöchern für alle Durchmesser in ungerissenem Beton


2a. Das Bohrloch vom Bohrlochgrund her 2x vollständig mit Druckluft (min. 6 bar) (Seite 7) ausblasen, bis die ausströmende Luft staubfrei ist. Bei tiefen Bohrlöchern sind Verlängerungen zu verwenden.

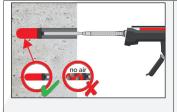

2b. Bürstendurchmesser prüfen (Seite 8). Das Bohrloch ist mit geeigneter Drahtbürste > d_{b,min} (Seite 8) minimum 2x mit Drehbewegungen auszubürsten. Wird der Bohrlochgrund mit der Bürste nicht erreicht, muss eine Bürstenverlängerung verwendet werden.


2C. Abschließend das Bohrloch erneut vom Bohrlochgrund her 2x vollständig mit Druckluft (min. 6 bar) (Seite 7) ausblasen, bis die ausströmende Luft staubfrei ist. Bei tiefen Bohrlöchern sind Verlängerungen zu verwenden.


3. Den mitgelieferten Statikmischer fest auf die Kartusche aufschrauben und Kartusche in eine geeignete Auspresspistole einlegen. Bei jeder Arbeitsunterbrechung länger als die maximale Verarbeitungszeit (Seite 4/5) und bei jeder neuen Kartusche ist der Statikmischer zu erneuern.


4. Vor dem Injizieren des Mörtels die geforderte Setztiefe auf der Ankerstange markieren.

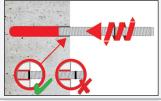
5. Der Mörtelvorlauf ist nicht zur Befestigung der Ankerstange geeignet. Daher den Vorlauf solange verwerfen, bis sich eine gleichmäßig graue Mischfarbe eingestellt hat, jedoch min. 3 volle Hübe.


6. Gereinigtes Bohrloch vom Bohrlochgrund her ca. zu 2/3 mit Verbundmörtel befüllen. Langsames Zurückziehen des Statikmischers aus dem Bohrloch verhindert die Bildung von Lufteinschlüssen. Wird der Bohrlochgrund nicht erreicht, muss eine passende Mischerverlängerung verwendet werden. Die temperaturrelevanten Verarbeitungszeiten (Seite 4/5) sind zu beachten.

- Verfüllstutzen und Mischerverlängerung sind gem. Seite 8 für die folgenden Anwendungen zu verwenden:
 - Horizontalmontage (horizontal Richtung) und Bodenmontage (vertikal Richtung nach unten): Bohrer-Ø d₀ ≥ 18 mm und Setztiefe h_{ef} > 250mm
 - Überkopfmontage (vertikale Richtung nach oben): Bohrer-Ø d₀ ≥ 18 mm.

Den Mischer, die Mischerverlängerung und den Verfüllstutzen vor dem Injizieren zusammenstecken.

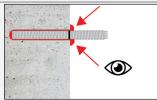
8. Den Verfüllstutzen bis zum Bohrlochgrund einführen und den Mörtel


Wird der Bohrlochgrund nicht erreicht, muss eine passende Mischerverlängerung verwendet werden.

Während des Initiierens wird der Verfüllstutzen durch den Staudruck

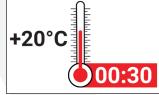
Mörtels auf natürliche Weise aus dem Bohrloch gedrückt.

Die temperaturrelevanten Verarbeitungs-


zeiten (Seite 4/5) sind zu beachten.

9. Befestigungselement mit leichten Drehbewegungen bis zur festgelegten Setztiefe einführen.

Die Ankerstange muss frei von Schmutz-, Fett,


Öl und anderen Fremdmaterialien sein.

10. Nach der Installation des Ankers muss der Ringspalt zwischen Ankerstange und Beton, bei Durchsteckmontage zusätzlich auch Anbauteil, komplett mit Mörtel ausgefüllt sein. Tritt keine Masse nach Erreichen der Verankerungstiefe heraus, ist diese Voraussetzung nicht erfüllt und die Anwendung muss vor Beendigung der Verarbeitungszeit wiederholt werden.

Bei Überkopfmontage ist die Ankerstange bis zum Start der Aushärtung zu fixieren (z. B. Holzkeile).

12. Die angegebene Aushärtezeit muss eingehalten werden. Anker während der Aushärtezeit nicht bewegen oder belasten. (siehe Seite 4).

13. Nach vollständiger Aushärtung kann das Anbauteil mit bis zu dem maximalen Drehmoment (Seite 8) montiert werden. Die Mutter muss mit einem kalibriertem Drehmomentschlüssel festgezogen werden. Optional kann der Ringspalt zwischen Ankerstange und Anbauteil mit Mörtel verfüllt werden. Dafür Unterlegscheibe durch Verfüllscheibe ersetzen und Mischerreduzierung auf den Mischer stecken. Der Ringspalt ist verfüllt, wenn Mörtel austritt.

Montagezubehör

MAC - Handpumpe (Volumen 750 ml) Bohrerdurchmesser (d_o): 10 mm bis 20 mm Bohrlochtiefe (h_n): < 10 d_{nom} Nur im ungerissenen Beton

CAC - Empfohlene Druckluftpistole (min 6 bar) Bohrernenndurchmesser (d_o): alle Durchmesser

HDB - Hohlbohrersystem Bohrerdurchmesser (d₀): alle Durchmesser Das Hohlbohrersystem besteht aus dem Heller Duster Expert Hohlbohrer und einem Klasse M Staubsauger mit einem minimalen Unterdruck von 253 hPa und einer Durchflussmenge von Minimum 150 m³/h (42 l/s).

					auni III,							
Anker- stangen	Beton- stahl	Innenge- winde- ankerstange	d _o Bohrer - Ø HD	D			Verfüll- stutzen	3				
[mm]	[mm]	[mm]	[mm]	[-]	[mm]	[mm]	[-]	1	>	1		
M8	8		10	RBT 10	11,5	10,5						
M10	8 / 10	IG-M6	12	RBT 12	13,5	12,5	Keir	n Verfül	Istutze	n		
M12	10 / 12	IG-M8	14	RBT 14	15,5	14,5		notwer	ndig			
	12		16	RBT 16	17,5	16,5						
M16	14	IG-M10	18	RBT 18	20,0	18,5	VS 18					
	16		20	RBT 20	22,0	20,5	VS 20					
M20		IG-M12	22	RBT 22	24,0	22,5	VS 22	1				
	20		25	RBT 25	27,0	25,5	VS 25	h _{ef} >	h _{ef} >			
M24		IG-M16	28	RBT 28	30,0	28,5	VS 28	250	250	alle		
M27	24 / 25		30	RBT 30	31,8	30,5	VS 30	mm	mm			
	24 / 25		32	RBT 32	34,0	32,5	VS 32					
M30	28	IG-M20	35	RBT 35	37,0	35,5	VS 35					
	32		40	RBT 40	43,5	40,5	VS 40					

Montagekennwerte

Dübelgröße (Ankerstange	n)		M8	M10	M12	M16	M20	M24	M27	M30
Außendurchmesser des Ankers	d = d _{nom}	[mm]	8	10	12	16	20	24	27	30
Bohrernenn- durchmesser	d _o	[mm]	10	12	14	18	22	28	30	35
Effektive Verankerung-	h _{ef,min}	[mm]	60	60	70	80	90	96	108	120
stiefe	h _{ef,max}	[mm]	160	200	240	320	400	480	540	600
Durchgangsloch im anzu-	Vorsteckmon-	[mm]	9	12	14	18	22	26	30	33
schließenden Bauteil 1)	Durchsteck- montage d,	[mm]	12	14	16	20	24	30	33	40
Maximales Montagedrehmoment	T _{inst} ≤	[Nm]	10	20	35	60	100	170	250	300
Mindestbauteildicke h _{min}		[mm]	h _{ef} +3	30 mm : mm	≥ 100	h _{ef} + 2d ₀				

Dübelgröße (Ankerstange	n)		M8	M10	M12	M16	M20	M24	M27	M30
Minimaler Achsabstand	S _{min}	[mm]	40	50	60	75	95	115	125	140
Minimaler Randabstand	C _{min}	[mm]	35	40	45	50	60	65	75	80

¹⁾ Bei Anwendung unter seismischer Belastung darf der Durchmesser des Durchgangslochs im Anbauteil maximal d₁ + 1 mm betragen oder alternativ ist der Ringspalt zwischen Anbauteil und Ankerstange kraftschlüssig mit Mörtel zu verfüllen.

Dübelgröße (Betonst	ahl)		ø8	3 1)	ø1	0 1)	ø1:	2 1)	ø14	ø16	ø20	ø2	4 ¹⁾	ø2	5 ¹⁾	ø28	ø32
Außendurchmesser des Ankers	d = d _{nom}	[mm]	8	3	1	0	1	2	14	16	20	2	5	2	5	28	32
Bohrernenn- durchmesser	d ₀	[mm]	10	12	12	14	14	16	18	20	25	30	32	30	32	35	40
Effektive Veranke-	h _{ef,min}	[mm]	6	60		60		70		80	90	96		100		112	128
		[mm]		50	200		24	10	280	320	400	48	30	50	00	560	640
Mindestbauteildicke		[mm]	h	ı _{ef} + 3 ≥ 100	0 mr) mm	n I					h	+ 20	d _o				
Minimaler Achsabstand	S _{min}	[mm]	4	.0	5	0	6	0	70	75	95	12	20	12	20	130	150
Minimaler Randab- stand	C _{min}	[mm]	3	5	4	0	4	5	50	50	60	7	0	7	0	75	85

 $^{^{1)}}$ Beide nominalen Bohrlochdurchmesser $\mathbf{d}_{_{\mathrm{0}}}$ können verwendet werden.

Dübelgröße (Innengewindeanker	stangen)		IG-M6	IG-M8	IG-M10	IG-M12	IG-M16	IG-M20
Innendurchmesser des Ankers	d ₂	[mm]	6	8	10	12	16	20
Außendurchmesser des Ankers ¹⁾	$d = d_{nom}$	[mm]	10	12	16	20	24	30
Bohrernenndurchmesser	d _o	[mm]	12	14	18	22	28	35
Effektive Verenkerungetiefe	h _{ef,min}	[mm]	60	70	80	90	96	120
Effektive Verankerungstiefe	h _{ef,max}	[mm]	200	240	320	400	480	600
Durchgangsloch im anzuschlie- ßenden Bauteil	d _f	[mm]	7	9	12	14	18	22
Maximales Montagedrehmoment	T _{inst} ≤	[Nm]	10	10	20	40	60	100
Einschraublänge (min/max)	I _{IG}	[mm]		8/20	10/25	12/30	16/32	20/40
Mindestbauteildicke	h _{min}	[mm]	h _{ef} + 30 n m		h _{ef} + 2d ₀			
Minimaler Achsabstand	S _{min}	[mm]	50	60	75	95	115	140
Minimaler Randabstand	C _{min}	[mm]	40	45	50	60	65	80

¹⁾ Mit metrischem Gewinde gemäß EN 1993-1-8:2005+AC:2009.

Empfohlene Lasten

Gewindestangen

Die empfohlenen Lastwerte gelten nur für Einzelanker zur überschlägigen Bemessung wenn die folgenden Bedingungen eingehalten sind:

- $s \ge 3.0 \times h_{ef}$
- ψ_{sus} = 1,0; Anteil permanenten Einwirkungen zur Gesamteinwirkung $\leq \psi^0_{sus}$ siehe Tabelle unten. Die empfohlenen Lastwerte wurden unter Berücksichtigung der Teilsicherheitsbeiwerte für den Widerstand aus der ETA und einem Teilsicherheitsbeiwert für die Einwirkungen von γ,=1.4 berechnet, der Teilsicherheitsbeiwert für Erdbebenbelastung ist γ_1 = 1,0.

Sind die aufgeführten Bedingungen nicht eingehalten, müssen die Lasten gem. EN 1992-4 neu berechnet werden. Für weitere Details ist die ETA-16/0018 zu beachten.

	sige Lasten für e	eine Nutzung	gsdauer v	on 50								
• Beto	 Stahlqualität 8.8 Beton - C20/25 Hammer- (HD) und Druckluftbohren (CD) trockener, feuchter Beton 						M12	M16	M20	M24	M27	M30
		ungerissen	N _{rec,stat}	[kN]	13,8	20,0	27,0	32,7	51,9	71,3	92,6	103,9
ب ا	80°C / 50°C ¹⁾		N _{rec,stat}	[kN]	6,7	10,1	15,8	22,9	36,3	49,9	64,8	72,7
Empfohlene Zuglast	$\psi^{0}_{sus} = 0,79$	gerissen	N _{rec,eq,C1}	[kN]	6,7	10,1	15,8	22,9	36,3	49,9	64,8	72,7
ne Zu			N _{rec,eq,C2}	[kN]	NPA	NPA	10,0	14,7	23,5	24,3	NPA	NPA
ohler		ungerissen	N _{rec,stat}	[kN]	13,8	18,8	27,0	32,7	51,9	71,3	92,6	103,9
:mpf	120°C / 72°C ¹⁾		N _{rec,stat}	[kN]	5,7	8,8	13,8	22,4	35,6	45,2	60,6	72,7
Ш	$\psi^{0}_{sus} = 0.75$	gerissen	N _{rec,eq,C1}	[kN]	5,7	8,8	13,8	22,4	35,6	45,2	60,6	72,7
			N _{rec,eq,C2}	[kN]	NPA	NPA	8,6	12,6	19,9	21,1	NPA	NPA
e		ungerissen	N _{rec,stat}	[kN]	11,5	14,8	21,7	29,9	48,3	67,9	90,9	103,9
npfohler Zuglast	160°C/100°C 1)		$N_{\text{rec,stat}}$	[kN]	5,3	7,4	11,8	19,4	30,5	41,5	55,5	66,6
Empfohlene Zuglast	$\psi^{0}_{sus} = 0.66$	gerissen	$N_{\text{rec,eq,C1}}$	[kN]	5,3	7,4	11,8	19,4	30,5	41,5	55,5	66,6
Ш			N _{rec,eq,C2}	[kN]	NPA	NPA	6,9	11,3	17,8	19,0	NPA	NPA
		ungerissen	V _{rec,stat}	[kN]	9,7	11,9	16,5	20,8	34,1	48,1	63,5	72,3
Empfo	hlene uglast ohne		V _{rec,stat}	[kN]	6,9	8,4	11,7	14,8	24,2	34,0	45,0	51,2
	arm ^{2) 3)}	gerissen	V _{rec,eq,C1}	[kN]	6,9	8,4	11,7	14,8	24,2	34,0	45,0	51,2
			V _{rec,eq,C2}	[kN]	NPA	NPA	11,7	14,8	24,2	32,3	NPA	NPA
Setztie				[mm]	80	90	110	125	170	210	250	270
Randa	Randabstand c ≥ [mm]			[mm]	120	135	165	187,5	255	315	375	405
Achsa	bstand	[mm]	240	270	330	375	510	630	750	810		

¹⁾ Kurzzeit-Temperatur/ Langzeit-Temperatur

 $N_{_{rec,stat'}}$ $V_{_{rec,stat'}}$ = empfohlene Lasten bei statischer und quasi-statischer Einwirkung

 $N_{_{rec,eq}}$, $V_{_{rec,eq}}$ =empfohlene Lasten bei seismischer Einwirkung

NPA = Keine Leistung bewertet

²⁾ Querzuglasten sind gültig für alle Temperaturbereiche.

³⁾ Bei seismischer Einwirkungen muss der Ringspalt zwischen Ankerstange und Durchgangsloch des Anbauteils mit Mörtel verfüllt werden, andernfalls muss $\alpha_{\rm gap}$ = 0,5 gem ETA-16/0018 berücksichtigt werden.

Zulässige Lasten für eine Nutzungsdauer von 50 Jahren • Stahlqualität 8.8 • Beton - C20/25 • Diamantbohren (DD) • trockener, feuchter Beton					M8	M10	M12	M16	M20	M24	M27	M30
$\frac{\partial \psi}{\partial x} = 0.77$ ungerissen N [kN]						18,8	27,0	32,7	51,9	71,3	92,6	103,9
_	$72^{\circ}\text{C} / 50^{\circ}\text{C}^{-1}$ $\psi^{0}_{\text{sus}} = 0.72$	ungerissen	N _{rec,stat}	[kN]	11,5	16,2	21,7	29,9	48,3	71,3	90,9	103,9
Querzi	Empfohlene Querzuglast ohne Hebelarm ^{2) 3)} [kN]					13,1	18,6	23,4	38,4	54,1	71,4	81,3
Setztiefe h _{ef} [mr				[mm]	80	90	110	125	170	210	250	270
Randa	Randabstand c ≥ [mm					135	165	188	255	315	375	405
Achsa	Achsabstand s ≥ [mm					270	330	375	510	630	750	810

¹⁾ Kurzzeit-Temperatur/ Langzeit-Temperatur

 $N_{\text{rec,stat'}}$ $V_{\text{rec,stat}}$ = empfohlene Lasten bei statischer und quasi-statischer Einwirkung

 $N_{\rm rec,eq'}$ $V_{\rm rec,eq}$ =empfohlene Lasten bei seismischer Einwirkung

 $^{^{2)} \;\;}$ Querzuglasten sind gültig für alle Temperaturbereiche.

Bei seismischer Einwirkungen muss der Ringspalt zwischen Ankerstange und Durchgangsloch des Anbauteils mit Mörtel verfüllt werden, andernfalls muss $\alpha_{\rm gap}$ = 0,5 gem ETA-16/0018 berücksichtigt werden.

Innengewindeankerstangen

Die empfohlenen Lastwerte gelten nur für Einzelanker zur überschlägigen Bemessung wenn die folgenden Bedingungen eingehalten sind:

- c ≥ 1,5 x h_{ef} $s \ge 3.0 \times h_{ef}$ $h \ge 2 \times h_{ef}$
- ψ_{sus} = 1,0; Änteil permanenten Einwirkungen zur Gesamteinwirkung $\leq \psi^0_{\text{sus}}$ siehe Tabelle unten. Die empfohlenen Lastwerte wurden unter Berücksichtigung der Teilsicherheitsbeiwerte für den Widerstand aus der ETA und einem Teilsicherheitsbeiwert für die Einwirkungen von γ.=1.4 berechnet, Der Teilsicherheitsbeiwert für Erdbebenbelastung ist γ_1 = 1,0.

Sind die aufgeführten Bedingungen nicht eingehalten, müssen die Lasten gem. EN 1992-4 neu berechnet werden. Für weitere Details ist die ETA-16/0018 zu beachten.

50 JahStahBetoHan	iige Lasten für Iren Ilqualität 8.8 In - C20/25 Inmer- (HD) un kener, feuchte		IG-M6	IG-M8	IG-M10	IG-M12	IG-M16	IG-M20		
	80°C / 50°C 1)		N _{rec,stat}	[kN]	7,6	13,8	21,9	31,9	57,6	93,3
ıglas	$\psi^{0}_{sus} = 0.79$	gerissen	N _{rec,stat}	[kN]	7,6	13,8	21,9	31,9	49,9	76,8
ne Zu	120°C / 72°C ¹⁾	ungerissen	N _{rec,stat}	[kN]	7,6	13,8	21,9	31,9	57,6	93,3
Empfohlene Zuglast	$\psi^{0}_{sus} = 0.75$	gerissen	N _{rec,stat}	[kN]	7,6	13,8	21,9	31,9	45,2	75,4
	160°C / 100°C ¹⁾	ungerissen	N _{rec,stat}	[kN]	7,6	13,8	21,9	31,9	57,6	93,3
_	$\psi^{0}_{sus} = 0,66$	gerissen	N _{rec,stat}	[kN]	7,4	11,8	19,4	30,5	41,5	69,1
Empfo	hlene uglast ohne	ungerissen	V _{rec,stat}	[kN]	4,6	8,6	13,1	19,4	34,9	56,0
	arm ^{2) 3)}	gerissen	V _{rec,stat}	[kN]	4,6	8,6	13,1	19,4	34,9	56,0
				[mm]	90	110	125	170	210	280
Randa	Randabstand c ≥ [mm]				135	165	185	255	315	420
Achsa	bstand		[mm]	270	330	370	510	630	840	

¹⁾ Kurzzeit-Temperatur/ Langzeit-Temperatur

N_{rec.stat}, V_{rec.stat} = empfohlene Lasten bei statischer und quasi-statischer Einwirkung

²⁾ Querzuglasten sind gültig für alle Temperaturbereiche.

Bei seismischer Einwirkungen muss der Ringspalt zwischen Ankerstange und Durchgangsloch des Anbauteils mit Mörtel verfüllt werden, andernfalls muss $\alpha_{\text{\tiny gap}}$ = 0,5 gem ETA-16/0018 berücksichtigt werden.

Betonstahl

Die empfohlenen Lastwerte gelten nur für Einzelanker zur überschlägigen Bemessung wenn die folgenden Bedingungen eingehalten sind:

- c ≥ 1,5 x h_{ef} $s \ge 3.0 \times h_{ef}$ $h \ge 2 \times h_{ef}$
- ψ_{sus} = 1,0; Anteil permanenten Einwirkungen zur Gesamteinwirkung ≤ ψ⁰_{sus} siehe Tabelle unten. Die empfohlenen Lastwerte wurden unter Berücksichtigung der Teilsicherheitsbeiwerte für den Widerstand aus der ETA und einem Teilsicherheitsbeiwert für die Einwirkungen von $\gamma_{\rm f}$ =1.4 berechnet, Der Teilsicherheitsbeiwert für Erdbebenbelastung ist γ_1 = 1,0.

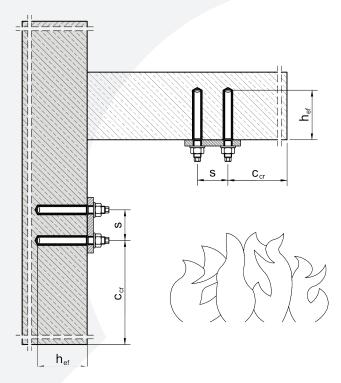
Sind die aufgeführten Bedingungen nicht eingehalten, müssen die Lasten gem. EN 1992-4 neu berechnet werden. Für weitere Details ist die ETA-16/0762 zu beachten.

	ssige Lasten fü	ir eine Nutzu	ingsdaue	r von										
	ahren	500												
	ahlqualität BSt eton - C20/25	500			Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø24	Ø25	Ø28	Ø32
	ammerbohren	(HD)												
	ockener, feucht													
		ungerissen	N _{rec,stat}	[kN]	13,4	18,8	27,0	28,9	32,7	51,9	68,8	71,3	92,6	103,9
	$80^{\circ}\text{C} / 50^{\circ}\text{C}^{-1}$ $\psi^{0}_{\text{sus}} = 0.79$		N _{rec,stat}	[kN]	5,3	7,4	11,8	15,7	19,4	33,1	47,8	49,9	64,8	72,7
ast	Y sus	gerissen	N _{rec,eq,C1}	[kN]	5,3	7,4	11,8	15,7	19,4	33,1	47,8	49,9	64,8	72,7
Zuglast	120°C /	ungerissen		[kN]	12,4	16,2	23,7	28,9	32,7	51,9	68,8	71,3	92,6	103,9
Empfohlene	72°C 1)	gerissen	N _{rec,stat}	[kN]	4,3	6,7	9,9	13,2	16,5	28,0	40,5	47,1	62,8	72,7
pfoh	$\psi^{0}_{sus} = 0.75$	genssen	N _{rec,eq,C1}	[kN]	4,3	6,7	9,9	13,2	16,5	28,0	40,5	47,1	62,8	72,7
Em	160°C /	ungerissen		[kN]	9,1	12,8	18,8	21,7	26,9	45,8	66,2	70,7	89,0	103,9
	100°C 1)	gerissen	N _{rec,stat}	[kN]	3,8	6,1	8,9	12,0	15,0	25,4	36,8	39,3	52,4	64,6
	$\psi^{0}_{sus} = 0,66$	genssen	N _{rec,eq,C1}	[kN]	3,8	6,1	8,9	12,0	15,0	25,4	36,8	39,3	52,4	64,6
Fmp	fohlene	ungerissen	V _{rec,stat}	[kN]	6,7	10,5	14,8	18,0	20,8	34,1	46,4	48,4	63,8	73,0
Quer	zuglast ohne	gerissen	V _{rec,stat}	[kN]	6,7	8,4	11,7	12,8	14,8	24,2	32,8	34,3	45,2	51,7
Hebe	elarm ^{2) 3)}	genssen	V _{rec,eq,C1}	[kN]	6,5	8,4	11,7	12,8	14,8	24,2	32,8	34,3	45,2	51,7
Setz	tiefe		h _{ef}	[mm]	80	90	110	115	125	170	205	210	250	270
Rand	dabstand		C≥	[mm]	120	135	165	175	185	255	310	315	375	405
Achs	sabstand		S≥	[mm]	240	270	330	350	370	510	620	630	750	810

Kurzzeit-Temperatur/ Langzeit-Temperatur

 $N_{_{rec,stat'}}$ $V_{_{rec,stat'}}$ = empfohlene Lasten bei statischer und quasi-statischer Einwirkung

 $N_{rec,eq'}$, $V_{rec,eq}$ =empfohlene Lasten bei seismischer Einwirkung


Querzuglasten sind gültig für alle Temperaturbereiche.

Bei seismischer Einwirkungen muss der Ringspalt zwischen Ankerstange und Durchgangsloch des Anbauteils mit Mörtel verfüllt werden, andernfalls muss $\alpha_{\rm gap}$ = 0,5 gem ETA-16/0762 berücksichtigt werden.

Feuerwiderstand

Die empfohlenen Feuerwiderstandslasten sind hinsichtlich ihrer Feuerwiderstandseigenschaften als Ankeranwendungen in einseitig brandbeanspruchten Wänden und Decken bewertet. Die Bewertung gemäß dem Gutachten EBB 170019_1 basiert auf Prüfungen nach DIN EN 1363-1: 2012 und dem Technischen Bericht TR020.

Die in der folgenden Tabelle empfohlenen Feuerwiderstände für Zug- und Querzugbelastung, sind gültig, wenn die folgenden Bedingungen erfüllt sind:

- Beton min. C20/25
- c ≥ 2,0 x h_{ef}
- $s \ge 4.0 \times h_{af}$
- Gewindestangen verzinkt: Festigkeitsklasse min. 5.8 (EN 1993-1-8:2005+AC:2009)
- Gewindestangen aus Edelstahl und hochkorrossionsbeständigem Stahl: Festigkeitsklasse min. 70 (EN ISO 3506-1:2009)

Die Berechnung der empfohlenen Lasten erfolgte unter Berücksichtigung des Teilsicherheitsbeiwert für den Feuerwiderstand $\gamma_{\rm M.f.}$ = 1.0 und einem Teilsicherheitsbeiwert für die Einwirkungen von

 $\gamma_{f}=1.0.$

		Zuläs	Zulässige Last N _{rec,fi(t)} in Abhänigkeit von der Feuerwiderstandszeit in Minuten									
Setztiefe		R30		R	50	R9	90	R120				
h _{ef}	messer	ungeris-	gerissen	ungeris-	gerissen	ungeris-	gerissen	ungeris-	gerissen			
		sen		sen	,	sen		sen				
[mm]	[mm]	[k	N]	[k	N]	[k	N]	[k	N]			
60		0,71	0,71	0,56	0,56	0,14	0,10	0,14	0,10			
65		0,71	0,71	0,56	0,56	0,29	0,22	0,15	0,11			
70		0,71	0,71	0,56	0,56	0,41	0,37	0,16	0,12			
75	M8	0,71	0,71	0,56	0,56	0,41	0,41	0,24	0,18			
80		0,71	0,71	0,56	0,56	0,41	0,41	0,33	0,32			
85		0,71	0,71	0,56	0,56	0,41	0,41	0,33	0,33			
≥ 90		0,71	0,71	0,56	0,56	0,41	0,41	0,33	0,33			

Stahlversagen ist für die Werte in den grauen Zellen maßgebend.

Zwischenwerte können linear interpoliert werden. Eine Extrapolation ist nicht zulässig.

0-4-4:-6-	Dunah				nänigkeit vo				
Setztiefe		, R3	30		50	R9	90		20
h _{ef}	messer	ungeris- sen	gerissen	ungeris- sen	gerissen	ungeris- sen	gerissen	ungeris- sen	gerissen
[mm]	[mm]	[k	N]		N]	[k	N]	[k	N]
60		1,42	1,42	0,58	0,44	0,17	0,13	0,17	0,13
65		1,42	1,42	0,95	0,71	0,18	0,14	0,18	0,14
70		1,42	1,42	1,11	1,07	0,34	0,25	0,20	0,15
75		1,42	1,42	1,11	1,11	0,60	0,45	0,21	0,16
80	M10	1,42	1,42	1,11	1,11	0,79	0,70	0,28	0,21
85		1,42	1,42	1,11	1,11	0,79	0,79	0,52	0,39
90		1,42	1,42	1,11	1,11	0,79	0,79	0,63	0,61
95		1,42	1,42	1,11	1,11	0,79	0,79	0,63	0,63
≥ 100		1,42	1,42	1,11	1,11	0,79	0,79	0,63	0,63
70		3,03	3,03	1,15	0,86	0,24	0,18	0,24	0,18
75		3,03	3,03	1,71	1,28	0,40	0,30	0,25	0,19
80		3,03	3,03	2,28	1,82	0,72	0,54	0,27	0,20
85		3,03	3,03	2,28	2,28	1,12	0,84	0,32	0,24
90	M12	3,03	3,03	2,28	2,28	1,60	1,22	0,61	0,46
95		3,03	3,03	2,28	2,28	1,60	1,60	0,96	0,72
100		3,03	3,03	2,28	2,28	1,60	1,60	1,18	1,04
105		3,03	3,03	2,28	2,28	1,60	1,60	1,18	1,18
≥ 110		3,03	3,03	2,28	2,28	1,60	1,60	1,18	1,18
80		5,65	5,65	1,66	1,25	0,36	0,27	0,36	0,27
85		5,65	5,65	2,41	1,81	0,58	0,44	0,38	0,29
90		5,65	5,65	3,34	2,50	1,02	0,76	0,41	0,31
95		5,65	5,65	4,24	3,36	1,55	1,16	0,43	0,32
100	M16	5,65	5,65	4,24	4,24	2,21	1,65	0,83	0,62
105		5,65	5,65	4,24	4,24	2,98	2,26	1,29	0,97
110		5,65	5,65	4,24	4,24	2,98	2,98	1,86	1,39
115		5,65	5,65	4,24	4,24	2,98	2,98	2,20	1,90
120		5,65	5,65	4,24	4,24	2,98	2,98	2,20	2,20
≥ 125		5,65	5,65	4,24	4,24	2,98	2,98	2,20	2,20
90		8,82	8,82	2,45	1,84	0,51	0,38	0,51	0,38
95		8,82	8,82	3,42	2,56	0,90	0,67	0,54	0,40
100		8,82	8,82	4,60	3,45	1,47	1,10	0,57	0,42
105		8,82	8,82	6,01	4,51	2,15	1,61	0,64	0,48
110		8,82	8,82	6,62	5,77	2,98	2,24	1,15	0,86
115	M20	8,82	8,82	6,62	6,62	3,98	2,99	1,75	1,31
120		8,82	8,82	6,62	6,62	4,66	3,89	2,46	1,84
125		8,82	8,82	6,62	6,62	4,66	3,89	3,30	2,47
130		8,82	8,82	6,62	6,62	4,66	3,89	3,43	3,23
135		8,82	8,82	6,62	6,62	4,66	3,89	3,43	3,43
≥ 140		8,82	8,82	6,62	6,62	4,66	3,89	3,43	3,43

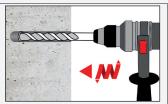
Stahlversagen ist für die Werte in den grauen Zellen maßgebend.

Zwischenwerte können linear interpoliert werden. Eine Extrapolation ist nicht zulässig.

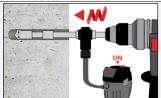
0		Zuläs	sige Last N	rec,fi(t) in Abh	nänigkeit vo	n der Feue	rwiderstand	dszeit in Mi	nuten
Setztiefe			30		50	R	90		20
h _{ef}	messer	ungeris- sen	gerissen	ungeris- sen	gerissen	ungeris- sen	gerissen	ungeris- sen	gerissen
[mm]	[mm]		N]		N]		N]		N]
95		12,71	10,16	2,52	1,89	0,64	0,48	0,64	0,48
100		12,71	12,48	3,54	2,66	0,73	0,54	0,68	0,51
105		12,71	12,71	4,76	3,57	1,35	1,01	0,71	0,53
110		12,71	12,71	6,23	4,67	2,07	1,55	0,75	0,56
115		12,71	12,71	7,97	5,98	2,93	2,20	0,95	0,71
120	M24	12,71	12,71	9,53	7,49	3,96	2,97	1,59	1,19
125	10124	12,71	12,71	9,53	9,25	5,18	3,89	2,32	1,74
130		12,71	12,71	9,53	9,53	6,61	4,96	3,19	2,39
135		12,71	12,71	9,53	9,53	6,71	6,22	4,20	3,15
140		12,71	12,71	9,53	9,53	6,71	6,71	4,94	4,05
145		12,71	12,71	9,53	9,53	6,71	6,71	4,94	4,94
≥ 150		12,71	12,71	9,53	9,53	6,71	6,71	4,94	4,94
108		16,52	16,52	5,27	3,95	1,43	1,07	0,82	0,62
115		16,52	16,52	6,85	5,13	2,21	1,66	0,88	0,66
120		16,52	16,52	8,72	6,54	3,15	2,36	0,92	0,69
125		16,52	16,52	10,87	8,15	4,24	3,18	1,62	1,22
130		16,52	16,52	12,39	9,99	5,52	4,14	2,40	1,80
135	M27	16,52	16,52	12,39	12,09	7,02	5,26	3,32	2,49
140		16,52	16,52	12,39	12,09	8,72	6,58	4,39	3,29
145		16,52	16,52	12,39	12,09	8,72	8,10	5,66	4,24
150		16,52	16,52	12,39	12,09	8,72	8,72	6,43	5,32
155		16,52	16,52	12,39	12,09	8,72	8,72	6,43	6,43
≥ 160		16,52	16,52	12,39	12,09	8,72	8,72	6,43	6,43
120		20,20	20,20	7,62	5,72	2,42	1,81	1,02	0,76
125		20,20	20,20	9,62	7,21	3,41	2,56	1,06	0,80
130		20,20	20,20	11,91	8,93	4,58	3,43	1,68	1,26
135		20,20	20,20	14,53	10,90	5,94	4,46	2,52	1,89
140		20,20	20,20	15,15	13,13	7,53	5,65	3,50	2,62
145	M30	20,20	20,20	15,15	15,15	9,37	7,03	4,63	3,47
150		20,20	20,20	15,15	15,15	10,66	8,61	5,95	4,46
155		20,20	20,20	15,15	15,15	10,66	10,41	7,46	5,59
160		20,20	20,20	15,15	15,15	10,66	10,66	7,85	6,90
165		20,20	20,20	15,15	15,15	10,66	10,66	7,85	7,85
≥ 170		20,20	20,20	15,15	15,15	10,66	10,66	7,85	7,85

Stahlversagen ist für die Werte in den grauen Zellen maßgebend.

Zwischenwerte können linear interpoliert werden. Eine Extrapolation ist nicht zulässig.



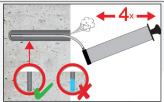
4. Nachträglicher Bewehrungsanschluß


Montageanweisung

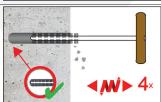
A) Bohrloch erstellen

Achtung: Vor dem Bohren, karbonatisierten Beton entfernen und Kontaktfläche reinigen. Bei Fehlbohrungen ist das Bohrloch zu vermörteln.

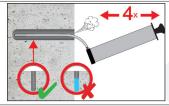
1a. Hammer (HD) oder Druckluftbohren (CD). Bohrloch mit dem Durchmesser und der Bohrlochtiefe entsprechend des gewählten Bewehrungseisens mit Hammerbohrer (HD) oder Druckluftbohrer (CD) in den Untergrund bohren. Weiter mit Schritt B1.



1b. Hohlbohrersystem (HDB) Bohrloch mit dem Durchmesser und der Bohrlochtiefe entsprechend des gewählten Bewehrungseisens in den Untergrund bohren. Das Hohlbohrersystem entfernt den Bohrstaub und reinigt das Bohrloch während des Bohrens. Weiter mit Schritt C.

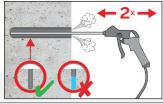

Achtung! Vor der Reinigung muss im Bohrloch stehendes Wasser entfernt werden.

B) Bohrlochreinigung

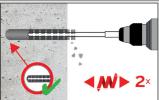

MAC: Reinigung für Bohrerdurchmesser $d_0 \le 20$ mm und Bohrlochtiefe $h_0 \le 10d_{nom}$

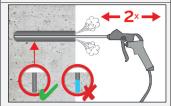
2a. Das Bohrloch vom Bohrlochgrund her 4x vollständig mit einer Handpumpe (Seite 18) ausblasen.

2b. Bürstendurchmesser prüfen (Seite 20). Das Bohrloch ist mit geeigneter Drahtbürste > d_{b,min} (Seite 20) mindestens 4x mittels Drehbewegungen auszubürsten. Bei tiefen Bohrlöchern ist eine geeignete Bürstenverlängerung zu benutzen.


2c. Abschließend das Bohrloch erneut vom Bohrlochgrund her 4x vollständig mit einer Handpumpe (Seite 18) ausblasen.

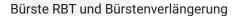
Nach der Reinigung ist das Bohrloch bis zum Injizieren des Mörtels vor erneutem Verschmutzen in einer geeigneten Weise zu schützen. Ggf. ist die Reinigung unmittelbar vor dem Injizieren des Mörtels zu wiederholen. Einfließendes Wasser darf nicht zur erneuten Verschmutzung des Bohrloches führen.




CAC: Reinigung für alle Bohrlochdurchmesser und Bohrlochtiefen

2a. Das Bohrloch vom Bohrlochgrund her 2x vollständig mit Druckluft (min. 6 bar) (Seite 18) ausblasen, bis die ausströmende Luft staubfrei ist. Bei tiefen Bohrlöchern sind Verlängerungen zu verwenden.

2b. Bürstendurchmesser prüfen (Seite 20). Das Bohrloch ist mit geeigneter Drahtbürste > d_{b,min} (Seite 20) minimum 2x mit Drehbewegungen auszubürsten. Wird der Bohrlochgrund mit der Bürste nicht erreicht, muss eine Bürstenverlängerung verwendet werden.



Abschließend das Bohrloch erneut vom Bohrlochgrund her 2x vollständig mit Druckluft (min. 6 bar) (Seite 18) ausblasen, bis die ausströmende Luft staubfrei ist. Bei tiefen Bohrlöchern sind Verlängerungen zu verwenden.

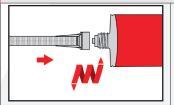
Nach der Reinigung ist das Bohrloch bis zum Injizieren des Mörtels vor erneutem Verschmutzen in einer geeigneten Weise zu schützen. Ggf. ist die Reinigung unmittelbar vor dem Injizieren des Mörtels zu wiederholen. Einfließendes Wasser darf nicht zur erneuten Verschmutzung des Bohrlochs führen.

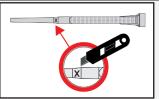
Montagezubehör

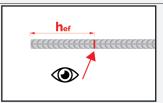
Handschiebeventil mit Druckluftschlauch (min 6 bar)

Handpumpe (Volume 750 ml)

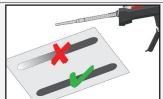
SDS Plus Adapter


HDB - Hohlbohrer




C) Vorbereitung von Kartusche und Bewehrungsstab

3. Die Kappe von der Kartusche entfernen und den mitgelieferten Statikmischer fest auf die Kartusche aufschrauben und Kartusche in eine geeignete Auspresspistole einlegen. Bei jeder Arbeitsunterbrechung länger als die empfohlene Verarbeitungszeit (Seite 4/5) und bei jeder neuen Kartusche ist der Statikmischer zu erneuern.



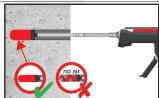
3a. Bei Verwendung der Mischerverlängerung VL16/1,8 muss die Spitze des Mischers an der Position "X" abgeschnitten werden.

3b. Vor dem Injizieren des Mörtels ist die Setztiefe auf dem Bewehrungsstab markieren (z. B. mit Klebeband). Danach den Bewehrungsstab in das leere Bohrloch einführen, um die korrekte Bohrlochtiefe I_v überprüfen.

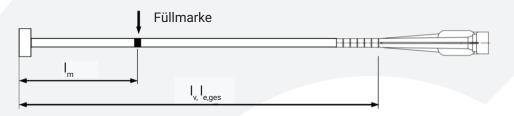
Der Bewehrungsstab sollte schmutz-, fett- und ölfrei sein.

3c. Der Mörtelvorlauf ist nicht zur Befestigung des Bewehrungseisens geeignet. Vor dem Injizieren ins Bohrloch, unvermischten Mörtel solange verwerfen, bis sich eine gleichmäßige graue Mischfarbe eingestellt hat, jedoch mindesten 3 volle Hübe.

D) Befüllen des Bohrlochs



4. Gereinigtes Bohrloch vom Bohrlochgrund her ca. 2/3 mit Verbundmörtel befüllen.


Langsames Zurückziehen des Statikmischers aus dem Bohrloch verhindert die Bildung von Lufteinschlüssen. Für Setztiefen größer 190 mm passende Mischerverlängerung verwenden.

Die temperaturrelevanten Verarbeitungszeiten (Seite 4/5) sind zu beachten.

Auf Mischer und Mischerverlängerung müssen Mörtel-Füllmarke $I_{\rm m}$ und Verankerungstiefe $I_{\rm v}$ bzw. $I_{\rm e,ges}$ mit einem Klebeband oder Textmarker markiert werden.

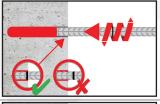
Grobe Abschätzung: $I_m = 1/3 * I_v$

Solange das Bohrloch mit Mörtel befüllen, bis die Mörtel-Füllmarke Markierung $\rm I_m$ sichtbar wird.

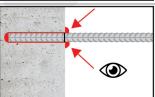
Optimales Mörtelvolumen: $I_m = I_v \text{rep. } I_{e,ges} * (1,2 * Ø^2/d_0^2 * 0,2) \text{ [mm]}$

Bürsten, Verfüllstutzen, maximale Verankerungstiefe und Mischerverlängerung, Hammer- (HD) und Druckluftbohren (CD)

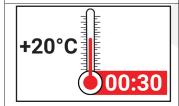
		Boh	or Ø	۵	d _b				Kartuschen	: Alle G	Alle Größen Kartusche: sid side (825 n		
Stab Ø	Zuganker Ø	БОІ	שיוו			min. Bürsten-		Hand	oder Akku- gerät	Druc	kluftpistole	Hand	l- oder Akku- gerät
		HD	CD	Duist	en - w	Ø		l v,max	Mischerver- längerung	l _{v,max}	Mischerver- längerung	l _{v,max}	Mischerver- längerung
[mm]	[mm]	[m	m]	[-]	[mm]	[mm]	[-]	[cm]	[-]	[cm]	[-]	[cm]	[-]
8	-	12	-	RB12	13,5	12,5	-			80		80	VI 10/0.75
10	-	14	-	RB14	15,5	14,5	VS14					100	VL 10/0,75
12	M12	1	6	RB16	17,5	16,5	VS16	70		100		120	
14	-	1	8	RB18	20,0	18,5	VS18			100		140	
16	M16	2	0	RB20	22,0	20,5	VS20					160	
20	M20	25	-	RB25	27,0	25,5	VS25		VL 10/0,75		VL 10/0,75		
20	-	_	26	RB26	28,0	26,5	VS25		VL 10/0,/3	70	VL 10/0,/3		VL 16/1,8
22	-	2	8	RB28	30,0	28,5	VS28					200	VL 10/1,0
24	-	3	2	RB32	34,0	32,5	VS32	50					
25	M24	3	2	RB32	34,0	32,5	VS32			50			
28	-	3	5	RB35	37,0	35,5	VS35			50		200	
32	-	4	0	RB40	43,5	40,5	VS40					200	



O


Bürsten, Verfüllstutzen, maximale Verankerungstiefe und Mischerverlängerung, Hammerbohren mit Hohlbohrsystem (HDB)

	Zuganker	Bohr-Ø	C	d _b	d _{b,min}	Verfüll-	Hand-	Kartuschen: oder Akku-		ößen kluftpistole	side Hand-	che: side-by- e (825 ml) oder Akku- Pistole
Ø	Ø	HDB	Bürst	en - Ø	Bürsten - Ø	stutzen	l v,max	Mischerver- längerung	l _{v,max}	Mischer- verlänge- rung	l v,max	Mischerver- längerung
[mm]	[mm]	[mm]	[-]	[mm]	[mm]	[-]	[cm]		[cm]		[cm]	
8	-	12				-			80		80	VI 10/0.75
10	-	14				VS14					100	VL 10/0,75
12	M12	16				VS16	70		100		100	
14	-	18				VS18			100		100	
16	M16	20		Keine		VS20					100	
20	M20	25		Reinigu		VS25		VL 10/0,75	70	VL 10/0,75		
22	-	28	е	rforderl	ich	VS28			70		100	VL 16/1,8
24	-	32				VS32	50				100	
25	M24	32				VS32	50		50			
28	-	35				VS35			50		100	
32	-	40				VS40					100	


E) Setzen des Bewehrungsstabes

5a. Bewehrungsstab mit leichter Drehbewegung (zur Verbesserung der Mörtelverteilung) bis zur Setztiefemarkierung in das Bohrloch einführen. Der Bewehrungsstab sollte schmutz-, fett-, und ölfrei sein.

5b. Nach Installation des Stabes sicherstellen, dass sich die Setztiefenmarkierung am Bohrlochanfang befindet und der Ringspalt komplett mit Mörtel ausgefüllt ist. Tritt keine Masse nach Erreichen der Setztiefe am Bohrlochanfang heraus, ist diese Voraussetzung nicht erfüllt und die Anwendung muss vor Beendigung der Verarbeitungszeit wiederholt werden. Bei Überkopfmontage ist der Bewehrungsstab zu fixieren (z. B. Holzkeile).

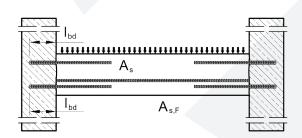
5C. Die angegebene Verarbeitungszeit t_{gel} ist zu beachten und einzuhalten. Achtung: die Verarbeitungszeit kann auf Grund von unterchiedlichen Untergrund-Temperaturen variieren (Seite 4/5). Bewehrungsstab vor Erreichen der Aushärtezeit t_{cure} (Seite 4/5) weder bewegen, noch belasten.

Endverankerung und Übergreifungsstoß - Bemessungslast $N_{\rm Rd}$

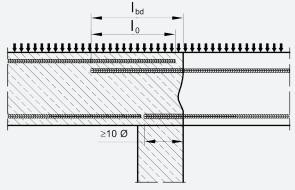
Bei der Berechnung der Verankerungslängen von Bewehrungsstäben im Bemessungsfall, wenn diese als Endverankerung oder als Übergreifungsstoß verwendet werden, sind die Bestimmungen der Zulassung ETA-16/0762 und der EN 1992-1-1:2004+AC:2010 zu berücksichtigen.

Die Bemessungslast mit dem dazugehörigen Versagensfall ("Herausziehen" oder "Stahlversagen") wurde für ausgewählte Stabdurchmesser und Verankerungslängen ermittelt. Die Ergebnisse für die Endverankerung und Übergreifungsstöße sind in den folgenden Tabellen aufgeführt.

Die Berechnungen basieren auf den folgenden Annahmen:


Bewehrungsstab BSt 500 S, f_{yk} = 500 N/mm², Materialsicherheitsfaktor von γ_s = 1,15 Betonklasse C20/25 und "gute Verbundbedingungen" nach EN 1992-1-1:2004+AC:2010 berücksichtigt. Stabdurchmesser \leq d = 32 mm.

Die Verbundeigenschaften der Stäbe werden durch die folgenden Koeffizienten berücksichtigt:


α_1	= 1,0;	berücksichtigt die Form der Stäbe bei ausreichender Überdeckung;
·		1,0 bei geraden Bewehrungsstäben
α_2	= 1,0;	berücksichtigt die Betonmindestdeckung; muss geprüft werden
α_3^3	= 1,0;	berücksichtigt vorhandene Querbewehrung;
Ü		1,0 für keine Querbewehrung
$\alpha_{_{A}}$	= 1,0;	berücksichtigt den Einfluss von einem oder mehreren geschweißten
-		Querstäben; 1,0 für keine angeschweißte Querbewehrung
α_{5}	= 1,0;	berücksichtigt die Wirkung des Querdrucks;
Ü		1,0 wenn kein Querdruck angenommen wird
α_{6}	= 1,5;	berücksichtigt den Prozentsatz der überlappenden Stäbe im Verhältnis
Ü		zur Gesamtquerschnittsfläche;
		1,5 aufgrund der baulichen Durchbildung des Bestands.

Alle Bohrverfahren (Hammerbohren, Druckluftbohren, Hohlbohr-Systeme) werden durch den Erhöhungsfaktor $\alpha_{\rm lb}$ = 1,0 berücksichtigt.

Endverankerung von Platten oder Balken

Übergreifungsstoß für Bewehrungsanschlüsse von Platten und Balken

Bet	constahl Ø8 -	Ø32	Fno	dveranker	una	Übe	rgreifun	asstoß		
	se C20/25			$= \alpha_3 = \alpha_4 =$				$= \alpha_3 = \alpha_4 = \alpha_5 = 1,0$		
	nl BSt 500 S;		1 0 2	3 04	5 1,0					
f _{yk} = 500 N	I/mm²	6.1		$\alpha_{lb} = 1.0$			$\alpha_6 = 1$,	ე 		
	(HD), Drucklı Hohlbohrsys			α _{lb} – 1,0		α _{lb} = 1,0				
d	N _{Rd,s}	l _{v,max}	l _{bd}	N _{Rd}	Mörtel- volumen	I _o	N _{Rd}	Mörtel- volumen 1)		
[mm]	[kN]	[mm]	[mm]	[kN]	[ml]	[mm]	[kN]	[ml]		
į	[]		113	6,6	9	200	7,7	15		
			200	11,6	15	320	12,3	24		
Ø8	21,9	1000	290	16,8	22	440	17,0	33		
			378	21,9	29	567	21,9	43		
			142	10,2	13	213	10,2	19		
			250	18,1	23	380	18,3	34		
Ø10	34,1	1000	360	26,0	33	550	26,5	50		
			473	34,1	43	709	34,1	64		
			170	14,8	18	255	14,8	27		
		1000		_						
Ø12	49,2	1200 (1000) ²⁾	300	26,0	32	450	26,0	48		
		(1000)-/	430	37,3	45	650	37,6	69		
			567	49,2	60	851	49,2	90		
			198	20,1	24	298	20,1	36		
Ø14	66,9	1400	350	35,4	42	530	35,7	64		
		(1000)2)	500	50,6	60	760	51,3	92		
			662	66,9	80	992	66,9	120		
			227	26,2	31	340	26,2	46		
Ø16	87,4	1600	400	46,2	54	600	46,2	81		
910	07,4	$(1000)^{2)}$	580	67,1	79	860	66,3	117		
			756	87,4	103	1134	87,4	154		
			284	41,0	60	425	41,0	90		
Ø20	126.6	2000	500	72,3	106	760	73,2	161		
Ø20	136,6	(1000)2)	720	104,0	153	1090	105,0	231		
			945	136,6	200	1418	136,6	301		
			312	49,6	22	468	49,6	132		
goo	1650	2000	550	87,4	39	830	88,0	235		
Ø22	165,3	(1000)2)	790	125,6	56	1190	126,1	336		
			1040	165,3	73	1560	165,3	441		
			340	59,0	144	510	59,0	216		
~~:	404-	2000	600	104,0	253	910	105,2	384		
Ø24	196,7	$(1000)^{2}$	860	149,1	363	1310	151,4	553		
			1134	196,7	479	1701	196,7	718		
			354	64,0	133	532	64,0	200		
		2000	630	113,8	237	950	114,4	357		
Ø25	213,4	2000 (1000) ²⁾	910	164,4	342	1360	163,8	511		
		(.000)	1181	213,4	444	1772	213,4	666		
			397	80,3	165	595	80,3	247		
		2000						-		
Ø28	267,7	2000 (1000) ²⁾	710	143,6	295	1060	143,0	441		
		(1000)-	1020	206,4	424	1520	205,0	632		
			1323	267,7	550	1985	267,7	825		

 $^{^{1)}}$ Mörtelvolumen des Übergreifungstoßes. Das Mörtelvolumen der Betonüberdeckung c_1 , an der Stirnseite des vorhandenen Betonstahls, wurde nicht berücksichtigt.

 $^{^{2)}}$ Maximale Setztiefe I $_{\rm v,max}$ bei Verwendung des Hohlbohrersystems (HDB), siehe ETA-16/0762

	Beto	onstahl Ø8 - (0 32	End	dveranker	ung	Über	greifun	gsstoß		
•	Betonklass			$\alpha_1 = \alpha_2 = \alpha_3 = \alpha_4 = \alpha_5 = 1.0$			$\alpha_1 = \alpha_2$	$\alpha_1 = \alpha_2 = \alpha_3 = \alpha_4 = \alpha_5 = 1.0$			
•		l BSt 500 S;		1 2	- 3 4	3	1 2		· ·		
	$f_{vk} = 500 \text{ N}$	/mm²		$\alpha_6 = 1.5$					5		
•	Hammer- ((HD), Drucklu Hohlbohrsys [.]			α_{lb} = 1,0			α _{lb} = 1,0			
	d	$N_{Rd,s}$	l v,max	l _{bd}	N _{Rd}	Mörtel-	I ₀	N _{Rd}	Mörtel-		
		·				volumen			volumen 1)		
	[mm]	[kN]	[mm]	[mm]	[kN]	[ml]	[mm]	[kN]	[ml]		
				454	104,9	246	681	104,9	369		
	Ø32	349,7	2000	810	187,3	440	1120	172,6	608		
	Ø3Z	349,7	$(1000)^{2)}$	1160	268,2	630	1560	240,5	847		
				1512	349,7	821	2000	308,3	1086		

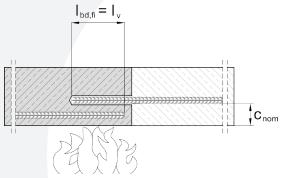
¹⁾ Mörtelvolumen des Übergreifungstoßes. Das Mörtelvolumen der Betonüberdeckung c₁, an der Stirnseite des vorhandenen Betonstahls, wurde nicht berücksichtigt.

Die Bemessungslast N_{Rd} (Endverankerung, Übergreifungsstoss) kann unter Beibehaltung der zuvor akzeptierten Randbedingungen und Verankerungslängen I_{bd} bzw. Übergreifungslänge I_0 für weitere Betonklassen umgewandelt werden, wobei wie folgt vorgegangen wird:

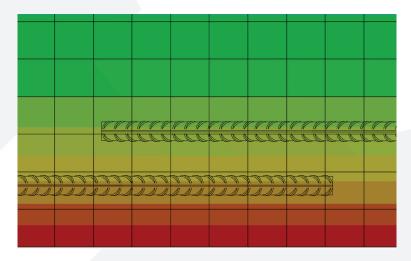
$$N_{Rd,con} = min (N_{Rd,s}; N_{Rd} * f_{bd,con} - Faktor) [kN]$$

Der Umrechnungsfaktor f_{bd.con} kann der nachstehenden Tabelle entnommen werden:

Betonklasse	Bewehrungsstab-Ø	f _{bd}	f _{bd,con} - Faktor
[-]	[mm]	[N/mm²]	[-]
C12/15		1,6	0,70
C16/20		2,0	0,87
C20/25		2,3	1,00
C25/30		2,7	1,17
C30/37	Ø8 bis Ø32 mm	3,0	1,30
C35/45		3,4	1,48
C40/50		3,7	1,61
C45/50		4,0	1,74
C50/60		4,3	1,87


 $^{^{2)}}$ Maximale Setztiefe I $_{_{v,max}}$ bei Verwendung des Hohlbohrersystems (HDB), siehe ETA-16/0762

Feuerwiderstand - Übergreifungsstoß


Die vorliegenden Tabellen beinhalten den mittleren Abminderungsfaktor $\overline{k}_{\Theta(x)}$, der zur Bestimmung der Bemessungsverbundtragfähigkeit $f_{bd,fi}$ von nachträglich eingebauten Bewehrungsanschlüssen unter Brandbeanspruchung für eine Feuerwiderstandsklasse benötigt wird.

Der angegebene mittlere Abminderungsfaktor $\overline{k}_{e(x)}$ gilt für Verbindungen von Platte an Platte (Übergreifungsstoss), bei denen die untere Fläche senkrecht dem Feuer ausgesetzt (eine Seite) und die Temperatur gleichmäßig ist. Die Verbundtragfähigkeit entlang des Stabes wird daher als gleichmäßig vorausgesetzt und hängt wesentlich von der Betondeckung und der Dauer des Feuers ab.

Die Wärmeentwicklung von Bauteilen wird mit einem Brandmodell berechnet, das auf der Standard Uniform-Temperature-Time-Curve (UTTC) nach ISO 834-1 basiert und versucht einen realen Brand zu simulieren.

Unten die berechnete Wärmeverteilung einer Platte nach einer Temperatureinwirkung von 14400 sec. (240 min) für die Feuerwiderstandsklasse R240.

Der Einfluss von Wärme auf die Verbundtragfähigkeit des Mörtels wurde durch Versuche ermittelt und wird durch den in der ETA-16/0762 angegebenen Reduktionsfaktor $k_{b,f}$ (Θ) ausgedrückt.

Die Berechnung der erforderlichen Übergreifungslängen I₀ im Bemessungsfall ist gemäß EN 1992-1-1:2004+AC:2010, Abschnitt 8.7.3, durchzuführen, wobei die Bestimmungen der ETA-16/0762 zu berücksichtigen sind.

Der Bemessungswert der Verbundtragfähigkeit $f_{bd,fi}$ unter Brandbeanspruchung ist nach folgender Gleichung zu berechnen:

$$f_{\text{bd,fi}} = \overline{k}_{\text{\Theta(x)}} * f_{\text{bd,PIR}} * \gamma_{\text{c}} / \gamma_{\text{M,fi}} * f_{\text{bd,fi,con}} \le f_{\text{bd,PIR}}$$

mit:

 $\gamma_{M,fi}$

f_{bd,fi} = Bemessungswert der Verbundtragfähigkeit unter Brandbeanspruchung in N/mm²

 $\overline{k}_{\Theta(x)}$ = Mittlerer Abminderungsfaktor unter Brandeinwirkung als Funktion des Temperaturprofils, angegeben in den folgenden Tabellen

f_{bd,PIR} = Bemessungswert der Verbundtragfähigkeit im kalten Zustand nach ETA-16/0762, Tab. C2 in Abhängigkeit von Betonklasse, Bewehrungsdurch messer, Bohrverfahren und Verbundbereich nach EN 1992-1-1 in N/mm²

γ_c = Teilsicherheitsbeiwert von Beton nach EN 1992-1-1; 1,5 bei fehlender nationaler Regelung

> = Teilsicherheitsfaktor der Brandbeanspruchung nach EN 1992-1-2; 1,0 bei fehlender nationaler Regelung

 $f_{\text{bd,fi,con}}$ = Umrechnungsfaktor unter Berücksichtigung des Einflusses der Betonklasse

Der mittlere Abminderungsfaktor $\overline{k}_{\Theta(x)}$ für Verbindungen von Platte an Platte mit Bewehrungsstäben Ø8 - Ø32 mm und Brand bei 30, 60, 90, 120, 180 oder 240 min ist in der vorliegenden Tabelle für verschiedene Betondeckungen angegeben und gilt nur bei guten Verbundbedingungen:

		Üb	ergreifungsst	Яo							
Bewehrungs- stab	M	Mittlerer Abminderungsfaktor unter Brandeinwirkung $\overline{k}_{_{\Theta(x)}}^{^{2)}}$									
Ø8 - Ø32mm		Feuerwiderstandsklasse									
C _{nom} 1)	R30	R60	R90	R120	R180	R240					
[mm]	[-]	[-]	[-]	[-]	[-]	[-]					
10											
15	0,00										
20		0.00									
25	0,10	0,00	0,00								
30	0,18		0,00	0.00							
35	0,29			0,00							
40	0,44	0,09			0,00						
45	0,60	0,13				0,00					
50	0,78	0,20	0,07								
55	0,98	0,27	0,11								
60	1,00	0,36	0,15	0,07							
65	1,00	0,46	0,20	0,10							
70	1,00	0,56	0,26	0,13							
75	1,00	0,68	0,32	0,17	0,06						
80	1,00	0,80	0,39	0,22	0,08						

		Üb	ergreifungsst	Яo		
Bewehrungs- stab	М	ittlerer Abmin	derungsfakto	r unter Brande	einwirkung $\overline{k}_{_{\Theta(x)}}$	2)
Ø8 - Ø32mm			Feuerwiders	tandsklasse		
C _{nom} 1)	R30	R60	R90	R120	R180	R240
[mm]	[-]	[-]	[-]	[-]	[-]	[-]
85	1,00	0,91	0,47	0,27	0,11	0,00
90	1,00	1,00	0,56	0,33	0,13	0,07
95	1,00	1,00	0,65	0,39	0,16	0,08
100	1,00	1,00	0,74	0,46	0,20	0,10
105	1,00	1,00	0,84	0,53	0,24	0,12
110	1,00	1,00	0,94	0,61	0,29	0,15
115	1,00	1,00	1,00	0,69	0,33	0,18
120	1,00	1,00	1,00	0,78	0,39	0,21
125	1,00	1,00	1,00	0,86	0,45	0,25
130	1,00	1,00	1,00	0,95	0,51	0,29
135	1,00	1,00	1,00	1,00	0,57	0,33
140	1,00	1,00	1,00	1,00	0,64	0,38
145	1,00	1,00	1,00	1,00	0,71	0,43
150	1,00	1,00	1,00	1,00	0,78	0,48
155	1,00	1,00	1,00	1,00	0,85	0,53
160	1,00	1,00	1,00	1,00	0,92	0,59
165	1,00	1,00	1,00	1,00	0,99	0,65
170	1,00	1,00	1,00	1,00	1,00	0,71
175	1,00	1,00	1,00	1,00	1,00	0,77
180	1,00	1,00	1,00	1,00	1,00	0,83

 $[\]frac{1}{c_{\text{nom}}}$ = Betonüberdeckung

Zwischenwerte von $\overline{k}_{\Theta(x)}$ können linear interpoliert werden. Eine Extrapolation ist nicht zulässig.

Die Verbundtragfähigkeit $f_{bd,PIR}$ ist abhängig von der Betonklasse und dem Bewehrungsdurchmesser sowie dem entsprechenden Umrechnungsfaktor $f_{bd,fi,con}$ und kann der folgenden Tabelle entnommen werden:

 $[\]overline{k}_{\Theta(x)}$ = Mittlerer Abminderungsfaktor über die Einbindetiefe des Bewehrungsstabes in Abhängigkeit vom Temperaturprofil

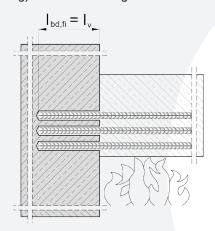
Betonklasse	Ø-Bewehrungsstab	f _{bd,PIR} (alle Bohrmethoden)	f _{bd,fi,con} - Faktor
[-]	[mm]	[N/mm²]	[-]
C12/15		1,6	1,44
C16/20		2,0	1,15
C20/25		2,3	1,00
C25/30		2,7	0,85
C30/37	Ø8 bis Ø32 mm	3,0	0,77
C35/45		3,4	0,68
C40/50		3,7	0,62
C45/55		4,0	0,58
C50/60		4,3	0,54

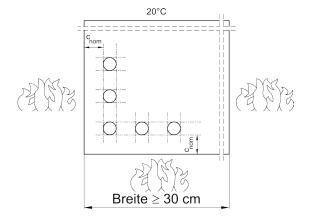
Die angegebenen Werte beziehen sich nicht auf die Bemessung für normale Umgebungstemperatur.

Diese muss zusätzlich und in Bezug auf ETA-16/0762 erfolgen.

Nachträglich eingebaute Bewehrungsanschlüsse müssen für eine normale Umgebungstemperatur ausgelegt werden, bevor die Bemessung für Brandbedingungen erfolgt.

Der Teilsicherheitsbeiwert für Einwirkungen kann zur Bestimmung der empfohlenen Lasten im Brandfall mit γ_F = 1,0 angenommen werden.

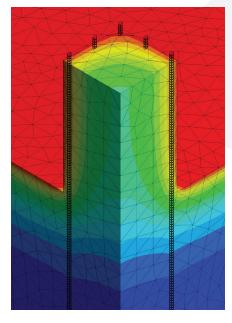


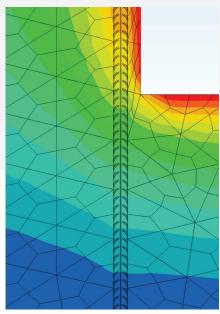


Feuerwiderstand - Endverankerung Träger/Wand oder Stütze/Platte

Die vorliegenden Tabellen beinhalten den mittleren Abminderungsfaktor $\overline{k}_{\Theta(x)}$, der zur Bestimmung der Bemessungsverbundtragfähigkeit $f_{bd,fi}$ von nachträglich eingebauten Bewehrungsanschlüssen unter Brandbeanspruchung für eine Feuerwiderstandsklasse benötigt wird.

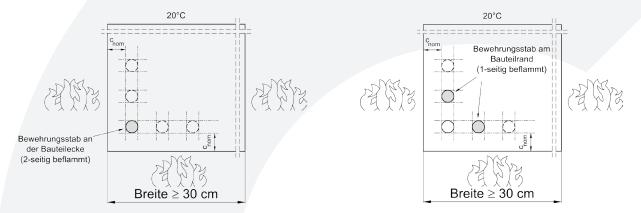
Der mittlere Abminderungsfaktor $\overline{k}_{g(\chi)}$ gilt für Träger/Wand- oder Stütze/Platte-Verbindungen, bei denen der Bewehrungsstab innerhalb der Wand / der Platte eingemörtelt ist und der Temperaturgradient in der Dicke der Wand bzw. der Platte verläuft, wenn der Balken (3-seitig) oder die Stütze (4-seitig) dem Feuer ausgesetzt ist..




Die Temperatur entlang der Verbundfläche ist nicht einheitlich und hängt von der Branddauer, der Verankerungslänge und der Betondeckung des Bewehrungsstabes im Inneren des Trägers (Schutz vor thermischer Einwirkung) ab. Daher werden die Temperaturprofile entlang des Verbundes für jede Branddauer, für jede Verbundlänge und für die Betondeckung im Inneren des Balkens von $c_{nom} = 10, 20, 30$ und 40 mm bestimmt.

Der angegebene mittlere Abminderungsfaktor $\overline{k}_{\theta(x)}$ ist ein Mittelwert als Funktion des Temperaturprofils entlang der Verbundlänge.

Das Rechenmodell des Brandes basiert auf der Standard Uniform-Temperature-Time-Curve (UTTC) nach ISO 834-1 und versucht, die Wärmeentwicklung von Bauteilen bei einem realen Brand zu simulieren.


Unten die berechnete Wärmeverteilung eines Balkens / einer Stütze und einer Wand / einer Platte nach einer Temperatureinwirkung von 14400 sec. (240 min) für die Feuerwiderstandsklasse R240.

Das Brandmodell bestimmt die Wärmeverteilung für Stäbe an der Bauteilecke (2 Seiten beflammt) und am Bauteilrand (1 Seite beflammt).

Der Einfluss der Wärme auf die Verbundtragfähigkeit des Mörtels wurde durch Versuche ermittelt und wird durch den in ETA-16/0762 angegebenen Reduktionsfaktor $k_{\rm b,f}$ (Θ) ausgedrückt. Die Berechnung der erforderlichen Verankerungslänge $l_{\rm bd}$ im Bemessungsfall ist gemäß EN 1992-1-1:2004+AC:2010, Abschnitt 8.4, durchzuführen, wobei die Bestimmungen der ETA-16/0762 zu beachten sind.

Der Bemessungswert der Verbundtragfähigkeit $f_{bd,fi}$ unter Brandbeanspruchung ist nach folgender Gleichung zu berechnen:

$$f_{\text{bd,fi}} \qquad = \overline{k}_{\text{O(x)}} \star f_{\text{bd,PIR}} \star \gamma_{\text{c}} / \gamma_{\text{M,fi}} \star f_{\text{bd,fi,con}} \leq f_{\text{bd,PIR}}$$

mit:

 $\gamma_{M,fi}$

f_{bd,fi} = Bemessungswert der Verbundtragfähigkeit unter Brandbeanspruchung in N/mm²

 $\overline{k}_{_{\Theta(x)}}$ = Mittlerer Abminderungsfaktor unter Brandeinwirkung als Funktion des Temperaturprofils, angegeben in den folgenden Tabellen

f_{bd,PIR} = Bemessungswert der Verbundtragfähigkeit im kalten Zustand nach ETA-16/0762, Tab. C2 in Abhängigkeit von Betonklasse, Bewehrungsdurch messer, Bohrverfahren und Verbundbereich nach EN 1992-1-1 in N/mm²

 $\gamma_{\rm c}$ = Teilsicherheitsbeiwert von Beton nach EN 1992-1-1; 1,5 bei fehlender nationaler Regelung

Teilsicherheitsfaktor der Brandbeanspruchung nach EN 1992-1-2;
 1,0 bei fehlendernationaler Regelung

 $f_{\text{bd,fi,con}}$ = Umrechnungsfaktor unter Berücksichtigung des Einflusses der Betonklasse

Der mittlere Abminderungsfaktor $\overline{k}_{\Theta(x)}$ für z. B. Träger-Wand oder Stütze-Platte Anwendungen bei Betondeckungen von $c_{nom}=10,\,20,\,30$ und 40 mm und unterschiedlichen Durchmesser des Bewehrungsstabs sowie einer Brandeinwirkungsdauer von 30, 60, 90, 120, 180 oder 240 min ist für einen Bewehrungsstab am Bauteilrand (1-seitig beflammt) oder für einen Bewehrungsstab in der Bauteilecke (2-seitig beflammt) in den folgenden Tabellen angegeben und gilt bei guten Verbundbedingungen:

Endverankerung - Mittlerer Abminderungsfak								Brandeir	nwirkung	$\overline{k}_{\Theta(x)}^{3)}$		
c _{nom} = 10	Bewehrungsstab am Bauteilrand						Bewehrungsstab an der Bauteilecke					
mm 1)	(1-seitig beflammt)					(2-seitig beflammt)						
Bewehrungs-					/							
stab		Feu	erwiders	tandskla	isse		Feuerwiderstandsklasse					
Ø8, Ø10												
2)	R30	R60	R90	R120	R180	R240	R30	R60	R90	R120	R180	R240
[mm]	[-]	[-]	[-]	[-]	[-]	[-]	[-]	[-]	[-]	[-]	[-]	[-]
80	0,71	0,34	0,18	0,10	0,04	0,01	0,50	0,19	0,08	0,04	0,01	0,00
90	0,74	0,41	0,23	0,14	0,05	0,02	0,55	0,25	0,11	0,06	0,02	0,00
100	0,77	0,47	0,28	0,17	0,07	0,03	0,60	0,32	0,15	0,09	0,03	0,01
110	0,79	0,52	0,34	0,22	0,10	0,05	0,63	0,38	0,20	0,12	0,05	0,02
120	0,80	0,56	0,40	0,27	0,13	0,07	0,67	0,43	0,26	0,16	0,08	0,04
130	0,82	0,59	0,44	0,32	0,16	0,09	0,69	0,47	0,32	0,21	0,10	0,05
140	0,83	0,62	0,48	0,37	0,20	0,11	0,71	0,51	0,37	0,26	0,13	0,07
150	0,84	0,64	0,52	0,41	0,24	0,14	0,73	0,54	0,41	0,31	0,17	0,10
160	0,85	0,67	0,55	0,45	0,28	0,17	0,75	0,57	0,45	0,35	0,21	0,12
170	0,86	0,69	0,57	0,48	0,33	0,20	0,76	0,60	0,48	0,39	0,25	0,15
180	0,87	0,70	0,60	0,51	0,36	0,24	0,78	0,62	0,51	0,43	0,29	0,18
190	0,88	0,72	0,62	0,54	0,40	0,27	0,79	0,64	0,53	0,46	0,33	0,22
200	0,88	0,73	0,64	0,56	0,43	0,31	0,80	0,66	0,56	0,48	0,36	0,26
210	0,89	0,75	0,66	0,58	0,45	0,34	0,81	0,67	0,58	0,51	0,39	0,29
220	0,89	0,76	0,67	0,60	0,48	0,37	0,82	0,69	0,60	0,53	0,42	0,32
230	0,90	0,77	0,69	0,62	0,50	0,40	0,83	0,70	0,61	0,55	0,44	0,35
240	0,90	0,78	0,70	0,63	0,52	0,42	0,83	0,72	0,63	0,57	0,47	0,38
250	0,91	0,79	0,71	0,65	0,54	0,45	0,84	0,73	0,65	0,59	0,49	0,40
260	0,91	0,79	0,72	0,66	0,56	0,47	0,85	0,74	0,66	0,60	0,51	0,43
270	0,91	0,80	0,73	0,67	0,58	0,49	0,85	0,75	0,67	0,62	0,53	0,45
280	0,92	0,81	0,74	0,69	0,59	0,51	0,86	0,76	0,68	0,63	0,54	0,47
290	0,92	0,82	0,75	0,70	0,60	0,52	0,86	0,76	0,69	0,64	0,56	0,49
300	0,92	0,82	0,76	0,71	0,62	0,54	0,87	0,77	0,70	0,66	0,57	0,50
310	0,92	0,83	0,77	0,72	0,63	0,55	0,87	0,78	0,71	0,67	0,59	0,52
320	0,93	0,83	0,77	0,73	0,64	0,57	0,87	0,79	0,72	0,68	0,60	0,53
350	0,93	0,85	0,79	0,75	0,67	0,61	0,89	0,80	0,75	0,70	0,63	0,57
400	0,94	0,87	0,82	0,78	0,71	0,65	0,90	0,83	0,78	0,74	0,68	0,63
450	0,95	0,88	0,84	0,80	0,75	0,69	0,91	0,85	0,80	0,77	0,72	0,67
500	0,95	0,89	0,86	0,82	0,77	0,72	0,92	0,86	0,82	0,79	0,74	0,70
550	0,96	0,90	0,87	0,84	0,79	0,75	0,93	0,88	0,84	0,81	0,77	0,73
600	0,96	0,91	0,88	0,85	0,81	0,77	0,93	0,89	0,85	0,83	0,79	0,75
700	0,97	0,92	0,90	0,87	0,84	0,80	0,94	0,90	0,87	0,85	0,82	0,79
800	0,97	0,93	0,91	0,89	0,86	0,83	0,95	0,91	0,89	0,87	0,84	0,81
900	0,97	0,94	0,92	0,90	0,87	0,85	0,96	0,92	0,90	0,89	0,86	0,83
1000	0,98	0,95	0,93	0,91	0,89	0,86	0,96	0,93	0,91	0,90	0,87	0,85

¹⁾ c_{nom} = Betonüberdeckung

Zwischenwerte von $\overline{k}_{_{\Theta(x)}}$ können linear interpoliert werden. Eine Extrapolation ist nicht zulässig.

 $^{^{2)}}$ $_{1_{y}}^{}$ = Einbindelänge des Bewehrungstabstahls im Beton $^{3)}$ $_{R}^{}$ $_{R}^{}$ = Mittlerer Abminderungsfaktor unter Brandeinwirkung als Funktion des Temperaturprofils

	Endverankerung - Mittlerer Abminderungsfaktor unter Brandeinwirkung $\overline{k}_{_{\Theta(x)}}$ $^{3)}$											
c _{nom} = 20 mm ¹⁾	Bewehrungsstab am Bauteilrand (1-seitig beflammt)						Bewehrungsstab an der Bauteilecke (2-seitig beflammt)					
Bewehrungs- stab Ø8 - Ø20	`					Feuerwiderstandsklasse						
2)	R30	R60	R90	R120	R180	R240	R30	R60	R90	R120	R180	R240
[mm]	[-]	[-]	[-]	[-]	[-]	[-]	[-]	[-]	[-]	[-]	[-]	[-]
80	0,91	0,48	0,27	0,15	0,05	0,01	0,66	0,24	0,11	0,06	0,01	0,00
90	0,92	0,54	0,31	0,18	0,07	0,02	0,69	0,29	0,14	0,08	0,02	0,00
100	0,92	0,59	0,36	0,22	0,09	0,04	0,72	0,34	0,17	0,10	0,04	0,01
110	0,93	0,62	0,40	0,25	0,11	0,05	0,75	0,40	0,21	0,13	0,05	0,02
120	0,94	0,66	0,45	0,29	0,13	0,06	0,77	0,45	0,26	0,16	0,07	0,03
130	0,94	0,68	0,50	0,33	0,15	0,08	0,79	0,49	0,30	0,19	0,09	0,04
140	0,95	0,71	0,53	0,37	0,18	0,10	0,80	0,53	0,35	0,23	0,11	0,06
150	0,95	0,72	0,56	0,42	0,21	0,12	0,82	0,56	0,39	0,27	0,14	0,07
160	0,95	0,74	0,59	0,45	0,24	0,14	0,83	0,59	0,43	0,31	0,16	0,09
170	0,96	0,76	0,61	0,48	0,28	0,16	0,84	0,61	0,46	0,35	0,19	0,11
180	0,96	0,77	0,64	0,51	0,31	0,19	0,85	0,63	0,49	0,39	0,23	0,14
190	0,96	0,78	0,65	0,54	0,35	0,21	0,85	0,65	0,52	0,42	0,26	0,16
200	0,96	0,79	0,67	0,56	0,38	0,24	0,86	0,67	0,54	0,45	0,30	0,19
210	0,96	0,80	0,69	0,58	0,41	0,27	0,87	0,69	0,57	0,47	0,33	0,22
220	0,97	0,81	0,70	0,60	0,44	0,31	0,87	0,70	0,59	0,50	0,36	0,25
230	0,97	0,82	0,71	0,62	0,46	0,34	0,88	0,71	0,60	0,52	0,39	0,28
240	0,97	0,83	0,73	0,63	0,49	0,36	0,89	0,72	0,62	0,54	0,41	0,31
250	0,97	0,83	0,74	0,65	0,51	0,39	0,89	0,74	0,64	0,56	0,44	0,34
260	0,97	0,84	0,75	0,66	0,52	0,41	0,89	0,75	0,65	0,58	0,46	0,37
270	0,97	0,85	0,76	0,68	0,54	0,44	0,90	0,76	0,66	0,59	0,48	0,39
280	0,97	0,85	0,77	0,69	0,56	0,46	0,90	0,76	0,67	0,61	0,50	0,41
290	0,97	0,86	0,77	0,70	0,57	0,47	0,90	0,77	0,69	0,62	0,52	0,43
300	0,97	0,86	0,78	0,71	0,59	0,49	0,91	0,78	0,70	0,63	0,53	0,45
310	0,98	0,87	0,79	0,72	0,60	0,51	0,91	0,79	0,71	0,64	0,55	0,47
320	0,98	0,87	0,79	0,73	0,61	0,52	0,91	0,79	0,72	0,66	0,56	0,48
350	0,98	0,88	0,81	0,75	0,65	0,56	0,92	0,81	0,74	0,68	0,60	0,53
400	0,98	0,90	0,84	0,78	0,69	0,62	0,93	0,83	0,77	0,72	0,65	0,59
500	0,98	0,92	0,87	0,82	0,75	0,69	0,94	0,87	0,82	0,78	0,72	0,67
600	0,99	0,93	0,89	0,85	0,79	0,75	0,95	0,89	0,85	0,82	0,77	0,72
700	0,99	0,94	0,91	0,87	0,82	0,78	0,96	0,91	0,87	0,84	0,80	0,76
800	0,99	0,95	0,92	0,89	0,85	0,81	0,97	0,92	0,89	0,86	0,82	0,79
900	0,99	0,95	0,93	0,90	0,86	0,83	0,97	0,93	0,90	0,88	0,84	0,82
1000	0,99	0,96	0,93	0,91	0,88	0,85	0,97	0,93	0,91	0,89	0,86	0,83
1500	0,99	0,97	0,96	0,94	0,92	0,90	0,98	0,96	0,94	0,93	0,91	0,89
2000	1,00	0,98	0,97	0,96	0,94	0,92	0,99	0,97	0,95	0,94	0,93	0,92

¹⁾ c_{nom} = Betonüberdeckung

Zwischenwerte von $\overline{k}_{_{\Theta(x)}}$ können linear interpoliert werden. Eine Extrapolation ist nicht zulässig.

 $[\]begin{array}{ll} & \text{Einbindelänge des Bewehrungstabstahls im Beton} \\ \text{3) } & \text{$\vec{k}_{\text{e(x)}}$} \end{array} = \text{Mittlerer Abminderungsfaktor unter Brandeinwirkung als Funktion des Temperaturprofils} \\ \end{array}$

Endverankerung - Mittlerer Abminderungsfaktor unter Brandeinwirkung $\overline{k}_{\Theta(x)}^{-3}$												
c _{nom} = 30	Bewehrungsstab am Bauteilrand							Bewehrungsstab an der Bauteilecke				
mm ¹⁾	(1-seitig beflammt)					(2-seitig beflammt)						
Beweh-												
rungsstab		Feuerwiderstandsklasse					Feuerwiderstandsklasse					
Ø8 - Ø28												
2)	R30	R60	R90	R120	R180	R240	R30	R60	R90	R120	R180	R240
[mm]	[-]	[-]	[-]	[-]	[-]	[-]	[-]	[-]	[-]	[-]	[-]	[-]
80	1,00	0,71	0,39	0,23	0,08	0,03	0,88	0,39	0,19	0,10	0,03	0,00
90	1,00	0,74	0,43	0,26	0,10	0,04	0,90	0,43	0,22	0,12	0,04	0,01
100	1,00	0,77	0,47	0,29	0,12	0,05	0,91	0,48	0,25	0,14	0,05	0,02
110	1,00	0,79	0,51	0,32	0,13	0,06	0,92	0,53	0,29	0,17	0,07	0,03
120	1,00	0,81	0,55	0,36	0,15	0,07	0,92	0,57	0,33	0,20	0,08	0,04
130	1,00	0,82	0,59	0,39	0,18	0,08	0,93	0,60	0,37	0,23	0,10	0,05
140	1,00	0,83	0,62	0,43	0,20	0,10	0,93	0,63	0,41	0,26	0,12	0,06
150	1,00	0,85	0,64	0,47	0,23	0,12	0,94	0,66	0,45	0,30	0,14	0,08
160	1,00	0,86	0,67	0,50	0,25	0,14	0,94	0,68	0,48	0,33	0,17	0,09
170	1,00	0,86	0,69	0,53	0,28	0,15	0,95	0,70	0,51	0,37	0,19	0,11
180	1,00	0,87	0,70	0,55	0,31	0,18	0,95	0,71	0,54	0,41	0,22	0,13
190	1,00	0,88	0,72	0,58	0,34	0,20	0,95	0,73	0,57	0,44	0,25	0,15
200	1,00	0,88	0,73	0,60	0,37	0,22	0,95	0,74	0,59	0,47	0,28	0,17
210	1,00	0,89	0,75	0,62	0,40	0,25	0,96	0,75	0,61	0,49	0,31	0,20
220	1,00	0,89	0,76	0,64	0,43	0,27	0,96	0,77	0,62	0,51	0,35	0,22
230	1,00	0,90	0,77	0,65	0,46	0,30	0,96	0,78	0,64	0,53	0,37	0,25
240	1,00	0,90	0,78	0,67	0,48	0,33	0,96	0,78	0,66	0,55	0,40	0,28
250	1,00	0,91	0,79	0,68	0,50	0,36	0,96	0,79	0,67	0,57	0,42	0,31
260	1,00	0,91	0,79	0,69	0,52	0,38	0,96	0,80	0,68	0,59	0,45	0,34
270	1,00	0,91	0,80	0,70	0,54	0,41	0,97	0,81	0,69	0,60	0,47	0,36
280	1,00	0,92	0,81	0,71	0,55	0,43	0,97	0,82	0,70	0,62	0,49	0,38
290	1,00	0,92	0,82	0,72	0,57	0,45	0,97	0,82	0,72	0,63	0,50	0,40
300	1,00	0,92	0,82	0,73	0,58	0,46	0,97	0,83	0,72	0,64	0,52	0,42
310	1,00	0,93	0,83	0,74	0,60	0,48	0,97	0,83	0,73	0,65	0,54	0,44
320	1,00	0,93	0,83	0,75	0,61	0,50	0,97	0,84	0,74	0,67	0,55	0,46
350	1,00	0,93	0,85	0,77	0,64	0,54	0,97	0,85	0,76	0,69	0,59	0,51
400	1,00	0,94	0,87	0,80	0,69	0,60	0,98	0,87	0,79	0,73	0,64	0,57
500	1,00	0,95	0,89	0,84	0,75	0,68	0,98	0,90	0,83	0,79	0,71	0,65
600	1,00	0,96	0,91	0,87	0,79	0,73	0,98	0,91	0,86	0,82	0,76	0,71
700	1,00	0,97	0,92	0,89	0,82	0,77	0,99	0,93	0,88	0,85	0,79	0,75
800	1,00	0,97	0,93	0,90	0,84	0,80	0,99	0,94	0,90	0,87	0,82	0,78
900	1,00	0,97	0,94	0,91	0,86	0,82	0,99	0,94	0,91	0,88	0,84	0,81
1000	1,00	0,98	0,95	0,92	0,87	0,84	0,99	0,95	0,92	0,89	0,86	0,83
1500	1,00	0,98	0,96	0,95	0,92	0,89	0,99	0,97	0,94	0,93	0,90	0,88
2000	1,00	0,99	0,97	0,96	0,94	0,92	1,00	0,97	0,96	0,95	0,93	0,91

 $[\]frac{2000}{10}$ c_{nom} = Betonüberdeckung

Zwischenwerte von $\overline{k}_{e(x)}$ können linear interpoliert werden. Eine Extrapolation ist nicht zulässig.

 $^{^{2)}}$ $_{\frac{1}{V}}$ = Einbindelänge des Bewehrungstabstahls im Beton $^{3)}$ $_{\Theta(x)}$ = Mittlerer Abminderungsfaktor unter Brandeinwirkung als Funktion des Temperaturprofils

Endverankerung - Mittlerer Abminderungsfaktor unter Brandeinwirkung $\overline{k}_{\Theta(x)}^{-3}$												
C _{nom} = 40 mm ¹⁾	Bewehrungsstab am Bauteilrand (1-seitig beflammt)						Bewehrungsstab an der Bauteilecke (2-seitig beflammt)					3
Beweh-	, , ,											
rungsstab		Feu	erwiders	tandskla	isse		Feuerwiderstandsklasse					
Ø8 - Ø40												
2)	R30	R60	R90	R120	R180	R240	R30	R60	R90	R120	R180	R240
[mm]	[-]	[-]	[-]	[-]	[-]	[-]	[-]	[-]	[-]	[-]	[-]	[-]
80	1,00	0,90	0,55	0,33	0,13	0,04	1,00	0,62	0,32	0,18	0,06	0,01
90	1,00	0,91	0,58	0,35	0,14	0,05	1,00	0,66	0,35	0,20	0,07	0,02
100	1,00	0,92	0,62	0,38	0,16	0,06	1,00	0,70	0,38	0,23	0,09	0,03
110	1,00	0,93	0,65	0,40	0,17	0,07	1,00	0,73	0,42	0,25	0,10	0,04
120	1,00	0,94	0,68	0,43	0,19	0,08	1,00	0,75	0,45	0,28	0,12	0,05
130	1,00	0,94	0,70	0,46	0,21	0,10	1,00	0,77	0,49	0,31	0,13	0,06
140	1,00	0,95	0,73	0,49	0,23	0,11	1,00	0,78	0,53	0,34	0,15	0,07
150	1,00	0,95	0,74	0,52	0,25	0,12	1,00	0,80	0,56	0,37	0,17	0,09
160	1,00	0,95	0,76	0,55	0,27	0,14	1,00	0,81	0,58	0,40	0,19	0,10
170	1,00	0,95	0,77	0,58	0,29	0,15	1,00	0,82	0,61	0,43	0,21	0,11
180	1,00	0,96	0,79	0,60	0,32	0,17	1,00	0,83	0,63	0,46	0,24	0,13
190	1,00	0,96	0,80	0,62	0,34	0,19	1,00	0,84	0,65	0,49	0,26	0,15
200	1,00	0,96	0,81	0,64	0,37	0,20	1,00	0,85	0,67	0,52	0,29	0,17
210	1,00	0,96	0,82	0,66	0,39	0,22	1,00	0,86	0,68	0,54	0,31	0,19
220	1,00	0,97	0,83	0,68	0,42	0,24	1,00	0,86	0,70	0,56	0,34	0,21
230	1,00	0,97	0,83	0,69	0,44	0,27	1,00	0,87	0,71	0,58	0,37	0,23
240	1,00	0,97	0,84	0,70	0,47	0,29	1,00	0,87	0,72	0,60	0,40	0,25
250	1,00	0,97	0,85	0,71	0,49	0,31	1,00	0,88	0,73	0,61	0,42	0,27
260	1,00	0,97	0,85	0,73	0,51	0,33	1,00	0,88	0,74	0,63	0,44	0,30
270	1,00	0,97	0,86	0,74	0,53	0,36	1,00	0,89	0,75	0,64	0,46	0,32
280	1,00	0,97	0,86	0,75	0,54	0,38	1,00	0,89	0,76	0,66	0,48	0,35
290	1,00	0,97	0,87	0,75	0,56	0,40	1,00	0,90	0,77	0,67	0,50	0,37
300	1,00	0,97	0,87	0,76	0,57	0,42	1,00	0,90	0,78	0,68	0,52	0,39
310	1,00	0,98	0,88	0,77	0,59	0,44	1,00	0,90	0,79	0,69	0,53	0,41
320	1,00	0,98	0,88	0,78	0,60	0,46	1,00	0,91	0,79	0,70	0,55	0,43
350	1,00	0,98	0,89	0,80	0,63	0,50	1,00	0,91	0,81	0,72	0,59	0,48
400	1,00	0,98	0,90	0,82	0,68	0,57	1,00	0,92	0,83	0,76	0,64	0,54
450	1,00	0,98	0,91	0,84	0,72	0,61	1,00	0,93	0,85	0,79	0,68	0,59
500	1,00	0,98	0,92	0,86	0,74	0,65	1,00	0,94	0,87	0,81	0,71	0,63
550	1,00	0,99	0,93	0,87	0,77	0,68	1,00	0,95	0,88	0,82	0,74	0,67
600	1,00	0,99	0,94	0,88	0,79	0,71	1,00	0,95	0,89	0,84	0,76	0,70
700	1,00	0,99	0,95	0,90	0,82	0,75	1,00	0,96	0,91	0,86	0,79	0,74
800	1,00	0,99	0,95	0,91	0,84	0,78	1,00	0,96	0,92	0,88	0,82	0,77
900	1,00	0,99	0,96	0,92	0,86	0,81	1,00	0,97	0,93	0,89	0,84	0,80
1000	1,00	0,99	0,96	0,93	0,87	0,83	1,00	0,97	0,93	0,90	0,85	0,82

T) c_{nom} = Betonüberdeckung

Zwischenwerte von $\overline{k}_{_{\Theta(x)}}$ können linear interpoliert werden. Eine Extrapolation ist nicht zulässig.

 $[\]frac{2}{l_{y}}$ = Einbindelänge des Bewehrungstabstahls im Beton $\frac{3}{k_{\text{e(x)}}}$ = Mittlerer Abminderungsfaktor unter Brandeinwirkung als Funktion des Temperaturprofils

Die Verbundtragfähigkeit $f_{bd,PIR}$ ist abhängig von der Betonklasse und dem Bewehrungsdurchmesser sowie dem dazugehörigen Umrechnungsfaktor $f_{bd,fi,con}$ und ist für Bewehrungsstäbe an der Bauteilecke und am Bauteilrand in der folgenden Tabelle zusammengestellt:

Betonklasse	Ø-Bewehrungsstab	f _{bd,PIR} (alle Bohrmethoden)	f _{bd,fi,con} - Faktor
[-]	[mm]	[N/mm²]	[-]
C12/15		1,6	1,44
C16/20		2,0	1,15
C20/25		2,3	1,00
C25/30		2,7	0,85
C30/37	Ø8 bis Ø32 mm	3,0	0,77
C35/45		3,4	0,68
C40/50		3,7	0,62
C45/55		4,0	0,58
C50/60		4,3	0,54

Die angegebenen Werte beziehen sich nicht auf die Bemessung für normale Umgebungstemperatur. Diese muss zusätzlich und in Bezug auf ETA-16/0762 erfolgen.

Nachträglich eingebaute Bewehrungsanschlüsse müssen für eine normale Umgebungstemperatur ausgelegt werden, bevor die Bemessung für Brandbedingungen erfolgt.

Die Verbundtragfähigkeit $f_{bd,fi}$ darf nicht für Verbindungen von Balken an Balken angewendet werden.

Der Teilsicherheitsbeiwert für Einwirkungen kann zur Bestimmung der empfohlenen Lasten im Brandfall mit γ_E = 1,0 angenommen werden.

4. Chemische Beständigkeit

	Vanzantration		
Chemikalie	Konzentration	Beständig	Nicht Beständig
Blei-Akku-Säure	Gewichts-%		, , , , , , , , , , , , , , , , , , ,
	10%		X
Essigsäure (Ethansäure)	40%	X	
Essigsäure (Ethansäure)	40%		X
Zementschlamm	F0/		X
Aceton	5%	X	
Aceton	10%		X
Aceton	100%		Х
Ammoniak, in wässriger Lösung	5%		X
Ammoniak, in wässriger Lösung	32%		X
Anillin	100%		X
Bier	100%		X
Chlor	Alle		X
Benzol	100%		X
Borsäure			X
Kalziumcarbonat	Alle		X
Kalziumchlorid		Χ	
Kalziumhydroxid			Х
Kalziumhypochlorit	10%	Χ	
Tetrachlormethan	100%		X
Natronlauge	10%		Х
Natronlauge	40%		Х
Zitronensäure	10%	Х	
Zitronensäure	50%		Х
Zitronensäure	Alle		Х
Chlorwasser, Schwimmbad	Alle	Х	
Deminieralisiertes Wasser	Alle	Х	
Dieselöl	100%	Х	
Ethanol (Alkohol) in wässriger Lösung	100%		X
Ethanol (Alkohol) in wässriger Lösung	50%		X
Methansäure (Ameisensäure)	10%		X
Methansäure (Ameisensäure)	30%		X
Methansäure (Ameisensäure)	100%		X
Formaldehyd, wässrige Lösung	20%		X
Formaldehyd, wässrige Lösung	30%		X
Difluorodichloromethane (Freon)	0070		X
Heizöl		Х	^
Benzin (premium grade)	100%	X	
Ethylenglycol	100%	^	X
Hydraulikflüssigkeit	konz.	X	^
Chlorwasserstoffsäure (Salzsäure)	konz.	^	Х
Wasserstoffperoxid	10%		X
Wasserstoffperoxid	30%		
	100%		X
Isopropanol	100%		Х
Hydroxypropionsäure (Milchsäure)		Х	
Hydroxypropionsäure (Milchsäure)	Alle		Х
Leinöl Matararia (Oslaraia rii	100%	X	
Motorenöl / Schmieröl	100%	X	
Magnesiumchlorid, wässrige Lösung	Alle		X
Methanol	100%		X
Motorenbenzin	1000		X
Motorenöl (SAE 20 W-50)	100%		X
Salpetersäure	10%		X
Ölsäure	100%		Х
Perchlorethylen	100%		Х
Petroleum	100%		Х

Die in der Tabelle aufgeführten Angaben gelten für kurzzeitigen Kontakt bei 20 °C des vollständig ausgehärteten Mörtel mit der Chemikalie (z. B. kurzeitiger Kontakt in einem Überlauf)

Chemikalie	Konzentration Gewichts-%	Beständig	Nicht Beständig
Phenol, wässrige Lösung	8%		X
Phenylmethanol	100%	Χ	
Phosphorsäure	85%		X
Phosphorsäure	10%	Χ	
Potasche (basisch, Kaliumhydroxid)	10%		X
Potasche (basisch, Kaliumhydroxid)	40%		Х
Kaliumcarbonat, wässrige Lösung	Alle		X
Kaliumchlorit, wässrige lösung	Alle		X
Kaliumnitrat, wässrige Lösung	Alle		X
Seewasser, salzig	Alle	Χ	
Natriumcarbonat	Alle	Χ	
Natriumchlorid (Kochsalz), wässrige	Alle		X
Lösung			
Natriumphosphat, wässrige Lösung	Alle		X
Natriumsilikat	Alle		X
Schwefelsäure	10%	Χ	
Schwefelsäure	30%		X
Schwefelsäure	70%		X
Weinsäure	Alle		Х
Tetrachlorethylen	100%		X
Toluol		<u> </u>	Х
Trichlorethylen	100%		Х
Terpentin	100%	·	Х

Die in der Tabelle aufgeführten Angaben gelten für kurzzeitigen Kontakt bei 20 °C des vollständig ausgehärteten Mörtel mit der Chemikalie (z. B. kurzeitiger Kontakt in einem Überlauf)

